分析 (1)求出圆心坐标与半径,设直线l2的方程y=k(x-1),利用PQ=6,可得圆心到直线的距离d=$\frac{|2k-1|}{\sqrt{{k}^{2}+1}}$=$\sqrt{10-9}$,即可求直线l2的方程;
(2)
设M(x,y),由点M在线段AD上,得2x+ty-2t=0,由AM≤2BM,得(x-$\frac{4}{3}$)2+(y+$\frac{2}{3}$)2≥$\frac{20}{9}$,依题意,线段AD与圆(x-$\frac{4}{3}$)2+(y+$\frac{2}{3}$)2≥$\frac{20}{9}$至多有一个公共点,故$\frac{|\frac{8}{3}-\frac{8}{3}t|}{\sqrt{4+{t}^{2}}}$≥$\frac{2\sqrt{5}}{3}$,由此入手能求出△EPQ的面积的最小值.
解答 解:(1)由题意,圆心坐标为(3,1),半径为$\sqrt{10}$,则
设直线l2的方程y=k(x-1),即kx-y-k=0,
∴圆心到直线的距离d=$\frac{|2k-1|}{\sqrt{{k}^{2}+1}}$=$\sqrt{10-9}$,
∴k=0或$\frac{4}{3}$,
∴直线l2的方程为y=0或4x-3y-1=0;
(2)设M(x,y),由点M在线段AD上,得$\frac{x}{t}+\frac{y}{2}$=1,
即2x+ty-2t=0,
由AM≤2BM,得(x-$\frac{4}{3}$)2+(y+$\frac{2}{3}$)2≥$\frac{20}{9}$,
依题意,线段AD与圆(x-$\frac{4}{3}$)2+(y+$\frac{2}{3}$)2≥$\frac{20}{9}$至多有一个公共点,
故$\frac{|\frac{8}{3}-\frac{8}{3}t|}{\sqrt{4+{t}^{2}}}$≥$\frac{2\sqrt{5}}{3}$,
解得t≤$\frac{16-10\sqrt{3}}{11}$或t≥$\frac{16+10\sqrt{3}}{11}$,
∵t是使AM≤2BM恒成立的最小正整数,∴t=4,
∴圆C的方程为(x-2)2+(y-1)2=5.
①当直线l2:x=1时,直线l1的方程为y=0,此时S△EPQ=2;
②当直线l2的斜率存在时,设l2的方程为y=k(x-1),k≠0,
则l1的方程为y=-$\frac{1}{k}$(x-1),点E(0,$\frac{1}{k}$),∴BE=$\sqrt{1+\frac{1}{{k}^{2}}}$,
又圆心到l2的距离为$\frac{|k+1|}{\sqrt{1+{k}^{2}}}$,
∴PQ=2$\sqrt{\frac{4{k}^{2}-2k+4}{1+{k}^{2}}}$,
∴S△EPQ=$\frac{1}{2}$•$\sqrt{1+\frac{1}{{k}^{2}}}$•2$\sqrt{\frac{4{k}^{2}-2k+4}{1+{k}^{2}}}$=$\sqrt{\frac{4}{{k}^{2}}-\frac{2}{k}+4}$=$\sqrt{4(\frac{1}{k}-\frac{1}{4})^{2}+\frac{15}{4}}$≥$\frac{\sqrt{15}}{2}$
∵$\frac{\sqrt{15}}{2}$<2,
∴(S△EPQ)min=$\frac{\sqrt{15}}{2}$.
点评 本题考查直线方程,考查三角形面积的最小值的求法,确定三角形面积是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com