以椭圆的一个顶点为直角顶点作此椭圆的内接等腰直角三角形,试问:(1)这样的等腰直角三角形是否存在?若存在,写出一个等腰直角三角形两腰所在的直线方程。若不存在,说明理由。(2)这样的等腰直角三角形若存在,最多有几个?
(1)存在,与;(2)存在,最多有个.
解析试题分析:(1)这样的等腰直角三角形存在.直线y=x+1与直线y=-x+1满足题意;
(2)设出CA所在的直线方程,代入椭圆的方程并整理,求出|CA|,同理求出|CB|,由|CA|=|CB|得(k-1)[k2-(a2-1)k+1]=0,讨论方程根的情况,即可得出结论.
试题解析:(1)这样的等腰直角三角形存在。因为直线与直线垂直,且关于轴对称,所以直线与直线是一个等腰直角三角形两腰所在的直线方程。
(2)设两点分别居于轴的左,右两侧,设的斜率为,则,所在的直线方程为,代入椭圆的方程并整理得,或,的横坐标为,,
同理可得,所以由得
,,
当时,(1)的解是无实数解;
当时,(1)的解是的解也是;当时,(1)的解除外,方程有两个不相等的正根,且都不等于,故(1)有 个正根。
所以符合题意的等腰直角三角形一定存在,最多有个。
考点:(1)椭圆的性质;(2)直线与圆锥曲线的应用.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.
(1)求圆心P的轨迹方程;
(2)若P点到直线y=x的距离为,求圆P的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设抛物线的焦点为,点,线段的中点在抛物线上. 设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.
(1)求的值;
(2)证明:圆与轴必有公共点;
(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆+=1(a>b>0),点P(a,a)在椭圆上.
(1)求椭圆的离心率;
(2)设A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆的圆心在坐标原点O,且恰好与直线相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN轴于N,若动点Q满足(其中m为非零常数),试求动点的轨迹方程.
(3)在(2)的结论下,当时,得到动点Q的轨迹曲线C,与垂直的直线与曲线C交于 B、D两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=, M, N是直线x=4上的两个动点,且·=0.
(1)求椭圆的方程;
(2)求MN的最小值;
(3)以MN为直径的圆C是否过定点?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.
(1)求椭圆C的方程和其“准圆”的方程.
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.
①当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;
②求证:|MN|为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直线,抛物线,已知点在抛物线上,且抛物线上的点到直线的距离的最小值为.
(1)求直线及抛物线的方程;
(2)过点的任一直线(不经过点)与抛物线交于、两点,直线与直线相交于点,记直线,,的斜率分别为,, .问:是否存在实数,使得?若存在,试求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com