精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x3+3x2-12x+3
(1)求f(x)的单调区间;
(2)求f(x)在[-3,3]上的最大值和最小值.

解:(1)求导函数,可得f′(x)=6(x+2)(x-1)
由f′(x)>0,可得x<-2或x>1;由f′(x)<0,可得-2<x<1
∴f(x)的单调递增区间为(-∞,-2),(1,+∞),递减区间为(-2,1);
(2)令f′(x)=0,可得x=-2或x=1
∵f(-2)=23,f(1)=-4,f(-3)=12,f(3)=48,
∴f(x)在[-3,3]上的最大值为48,最小值为-4.
分析:(1)求导函数,由导数的正负,可得f(x)的单调区间;
(2)利用函数的最值在极值点及端点处取得,即可求得结论.
点评:本题考查导数知识的运用,考查函数的单调性与最值,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案