精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,三个内角A,B,C所对的边分别为a,b,c,已知函数f(x)=sin(3x+B)+cos(3x+B)是偶函数,且b=f( ).
(1)求b.
(2)若a= ,求角C.

【答案】
(1)解:f(x)=sin(3x+B)+cos(3x+B)=

∵f(x)是偶函数,

…(2分)

∵B∈(0,π),

…(4分)


(2)解:∵ ,由正弦定理得: ,…(8分)

∵a<b,

∴从而


【解析】(1)利用两角和的正弦函数公式化简函数解析式可得f(x)= ,由题意可得 ,结合B范围可求B,求得解析式,即可得解b=f( )的值.(2)由已知及正弦定理得 ,结合大边对大角及A的范围可求A,利用三角形内角和定理即可得解C的值.
【考点精析】通过灵活运用正弦定理的定义,掌握正弦定理:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an
(1)求数列{an},{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Sn
(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集是空集,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组数据3,4,5,a,b的平均数是4,中位数是m,从3,4,5,a,b,m这组数据中任取一数,取到数字4的概率为 ,那么3,4,5,a,b这组数据的方差为(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣a|+2x(a∈R)
(1)当a=4时,解不等式f(x)≥8;
(2)当a∈[0,4]时,求f(x)在区间[3,4]上的最小值;
(3)若存在a∈[0,4],使得关于x的方程f(x)=tf(a)有3个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】儿童乘坐火车时,若身高不超过1.1m,则不需买票;若身高超过1.1m但不超过1.4m,则需买半票;若身高超过1.4m,则需买全票.试设计一个买票的算法,并写出相应的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆x2+y2=8内有一点P0(﹣1,2),AB为过点P0且倾斜角为α的弦;
(1)当 时,求AB的长;
(2)当弦AB被点P0平分时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: + =1(a>b>0)过点(2,0),离心率为
(1)求C的方程;
(2)过点(1,0)且斜率为1的直线l与椭圆C相交于A,B两点,求AB的中点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是各项均为正数的等比数列a1+a2=2( ),a3+a4+a5=64 + +
(1)求{an}的通项公式;
(2)设bn=(an+ 2 , 求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案