(本小题满分12分)如图,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2。
(I)求证:C1D//平面ABB1A1;
(II)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值。
(1)略
(2)
(3)
【解析】(I)证明:四棱柱ABCD—A1B1C1D1中,BB1//CC1,
又面ABB1A1,所以CC1//平面ABB1A1, …………2分
ABCD是正方形,所以CD//AB,
又CD面ABB1A1,AB面ABB1A1,所以CD//平面ABB1A1,…………3分
所以平面CDD1C1//平面ABB1A1,
所以C1D//平面ABB1A1 …………4分
(II)解:ABCD是正方形,AD⊥CD
因为A1D⊥平面ABCD,
所以A1D⊥AD,A1D⊥CD,
如图,以D为原点建立空间直角坐标系D—xyz, …………5分
在中,由已知可得
所以,
|
…………6分
因为A1D⊥平面ABCD,
所以A1D⊥平面A1B1C1D1
A1D⊥B1D1。
又B1D1⊥A1C1,
所以B1D1⊥平面A1C1D, …………7分
所以平面A1C1D的一个法向量为n=(1,1,0) …………8分
设与n所成的角为,
则
所以直线BD1与平面A1C1D所成角的正弦值为 …………9分
(III)解:平面A1C1A的法向量为
则 所以
令可得 …………11分
则
所以二面角的余弦值为 …………12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com