精英家教网 > 高中数学 > 题目详情
7.若0<x<1,则$\sqrt{x}$,$\frac{1}{x}$,x,x2的大小关系是x2<x<$\sqrt{x}$<$\frac{1}{x}$.

分析 此题可以转化为指数函数的大小比较,利用指数函数的单调性进行解答.

解答 解:设y1=$\sqrt{x}$=x${\;}^{\frac{1}{2}}$,y2=$\frac{1}{x}$=x-1,y3=x,y4=x2
∵0<x<1,
∴函数y=ax,在定义域内单调递减,
∵2>1>$\frac{1}{2}$>-1,
∴x2<x<$\sqrt{x}$<$\frac{1}{x}$.
故答案是:x2<x<$\sqrt{x}$<$\frac{1}{x}$.

点评 本题考查了不等式比较大小.本题利用了函数的单调性来比较大小,减少了繁琐的计算过程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列命题中的真命题有(  )
①做9次抛掷一枚均匀硬币的试验,结果有5次出现正面,因此,出现正面的概率是$\frac{5}{9}$;
②盒子中装有大小均匀的3个红球,3个黑球,2个白球,那么每种颜色的球被摸到的可能性相同;
③从-4,-3,-2,-1,0,1,2中任取一个数,取得的数小于0和不小于0的可能性相同;
④分别从2名男生,3名女生中各选一名作为代表,那么每名学生被选中的可能性相同.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.顺次列出的规律相同的20个数中的前四个数依次是2×1-1,2×2-1,2×3-1,2×4-1,第15个数是(  )
A.15B.29C.16D.31

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x||x-2|>1},B={x|x2+px+q>0},若A=B,则p+q=(  )
A.1B.-1C.7D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\frac{lnx}{x}$(0<x<1),则下列不等式正确的是(  )
A.f2(x)<f(x2)<f(x)B.f(x2)<f2(x)<f(x)C.f(x)<f(x2)<f2(x)D.f(x2)<f(x)<f2(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知下列不等式①x2-4x+3<0;②x2-6x+8<0;③2x2-9x+a<0,且使不等式①②成立的x也满足③,则实数a的取值范围是(  )
A.a≥$\frac{9}{4}$B.a≤10C.a≤9D.a≥-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各数中,可能是六进制数的是(  )
A.66B.108C.732D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\overrightarrow a•({\overrightarrow b+\overrightarrow c})$,其中向量$\overrightarrow a=({sinx,-cosx})$,$\overrightarrow b=({sinx,-3cosx})$,$\overrightarrow c=({-cosx,sinx})$,x∈R
(1)求函数f(x)的单调减区间;
(2)当$x∈[{\frac{π}{8},\frac{π}{2}}]$时,方程f(x)+m-2=0有且仅有一个根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{1-{2^x}}}{{a+{2^x}}}$,且满足f(1)=-$\frac{1}{3}$
(Ⅰ)求f(x)的解析式;
(Ⅱ) 判断并证明函数f(x)的奇偶性;
(Ⅲ)若对任意的t∈[0,1],不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案