精英家教网 > 高中数学 > 题目详情

定义在上的函数对任意都有为常数).
(1)判断为何值时为奇函数,并证明;
(2)设上的增函数,且,若不等式对任意恒成立,求实数的取值范围.

(1),证明过程详见解析;(2).

解析试题分析:本题主要考查抽象函数奇偶性的判断和利用函数单调性解不等式.考查学生的分析问题解决问题的能力.考查转化思想和分类讨论思想.第一问,用赋值法证明函数的奇偶性;第二问,利用单调性解不等式,转化成恒成立问题,再利用二次函数的性质求的取值范围.
试题解析:(Ⅰ)若上为奇函数,则,    1分
,则,∴.      2分
证明:由,令,则
,则有.即对任意成立,所以是奇函数.
6分
(Ⅱ)      7分
对任意恒成立.
上的增函数,∴对任意恒成立,      9分
对任意恒成立,
时显然成立;
时,由
所以实数m的取值范围是.      13分
考点:1.抽象函数的奇偶性的判断;2.恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(1)解不等式:
(2)已知集合.若,求实数的取值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且,若恒成立.
(1)判断上是增函数还是减函数,并证明你的结论;
(2)若对所有恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若上为增函数,求实数的取值范围;
(Ⅱ)当时,方程有实根,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数.
(1)若对任意,且,都有,求证:关于的方程
有两个不相等的实数根且必有一个根属于
(2)若关于的方程上的根为,且,设函数的图象的对称轴方程为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以为首项的数列满足:
(1)若,求证:;
(2)若,求使对任意正整数n都成立的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.
(Ⅰ)已知函数,若,求实数的取值范围;
(Ⅱ)已知的部分函数值由下表给出,











 求证:
(Ⅲ)定义集合
请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若存在,使得成立,求实数的取值范围;
(2)解关于的不等式
(3)若,求的最大值.

查看答案和解析>>

同步练习册答案