精英家教网 > 高中数学 > 题目详情

已知以为首项的数列满足:
(1)若,求证:;
(2)若,求使对任意正整数n都成立的.

(1)证明过程详见解析;(2)当时,满足题意的N*; 当时,满足题意的N*.

解析试题分析:本题考查数列与函数的综合知识.第一问,将从3断开,分成两部分,分别求出的范围;第二问,分别验证每一种情况.
试题解析:(1)当时,则,当时,则,
,所以当时,总有.     8分
(2)①当时,,故满足题意的
同理可得,当或4时,满足题意的N*.
或6时,满足题意的N*.
②当时,,故满足题意的k不存在.
③当时,由(1)知,满足题意的k不存在.
综上得:当时,满足题意的N*;
时,满足题意的N*.    16分.
考点:1.求分段函数的值域;2.恒成立问题;3.分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

近年来,网上购物已经成为人们消费的一种趋势。假设某淘宝店的一种装饰品每月的销售量y(单位:千件)与销售价格x(单位:元/件)满足关系式其中2<x<6,m为常数,已知销售价格为4元/件时,每月可售出21千件。(1)求m的值; (2)假设该淘宝店员工工资、办公等每月所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格x的值,使该店每月销售饰品所获得的利润最大.(结果保留一位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.
(1)设一次订购x件,服装的实际出厂单价为p元,写出函数的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数对任意都有为常数).
(1)判断为何值时为奇函数,并证明;
(2)设上的增函数,且,若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知函数)在区间上有最大值和最小值.设,       
(1)求的值;
(2)若不等式上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求的值;
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我省某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:
为常数。当万元时,万元;
万元时,万元。 (参考数据:
(1)求的解析式;
(2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,试比较大小:
(1)f(6)与f(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)当时,判断的大小,并说明理由;
(3)求证:当时,关于的方程:在区间上总有两个不同的解.

查看答案和解析>>

同步练习册答案