精英家教网 > 高中数学 > 题目详情

甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.

 

-1,0,1,2,3

【解析】甲获胜且获得最低分的情况是:甲抢到一题并回答错误,乙抢到两题并且都回答错误,此时甲得-1分,故X的所有可能取值为-1,0,1,2,3.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届贵州省高二下学期期中文科数学试卷(解析版) 题型:选择题

”是“”的( )

A.充分而不必要条件 B.必要而不充分条件

C.充分必要条件 D.既不充分也不必要条件

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标3.2练习卷(解析版) 题型:填空题

对具有线性相关关系的变量x、y有观测数据(xi,yi)(i=1,2,…,10),它们之间的线性回归方程是=3x+20,若=18,则=________.

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标2章练习卷(解析版) 题型:解答题

学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)

(1)求在一次游戏中,①摸出3个白球的概率,②获奖的概率;

(2)求在两次游戏中获奖次数X的分布列及数学期望E(X).

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标2章练习卷(解析版) 题型:填空题

在等差数列{an}中,a4=2,a7=-4.现从{an}的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________(用数字作答).

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标2章练习卷(解析版) 题型:填空题

在一次考试中,某班语文、数学、外语平均分在80分以上的概率分别为,则该班的三科平均分都在80分以上的概率是________.

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标2.6练习卷(解析版) 题型:解答题

已知某种零件的尺寸X(单位:mm)服从正态分布,其正态曲线在(0,80)上是增函数,在(80,+∞)上是减函数,且f(80)=.

(1)求正态分布密度函数的解析式;

(2)估计尺寸在72mm~88mm之间的零件大约占总数的百分之几.

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标2.5练习卷(解析版) 题型:解答题

某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:

方案1:运走设备,此时需花费4000元;

方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;

方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.

(1)试求方案3中损失费X(随机变量)的分布列;

(2)试比较哪一种方案好.

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标2.3练习卷(解析版) 题型:填空题

已知某种产品的合格率是95%,合格品中的一级品率是20%,则这种产品的一级品率为________.

 

查看答案和解析>>

同步练习册答案