精英家教网 > 高中数学 > 题目详情
对于函数
①过该函数图像上一点()的切线的斜率为
②函数的最小值为    
③该函数图像与轴有4个交点
④函数上为减函数,在上也为减函数
其中正确命题的序号为                  
①②④

试题分析:时,,故,①正确;
上单调递减,在上单调递增,故时,有最小值
时,上单调递减,在上单调递增,故时,有最小值,故函数的最小值为,②④正确;
因为时,恒小于0,且时,轴有两个交点,故该函数图象与轴有3个交点,③错误;
故答案为①②④.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

对于函数若存在,使得成立,则称的不动点.
已知
(1)当时,求函数的不动点;
(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围;
(3)在(2)的条件下,若图象上两点的横坐标是函数的不动点,且两点关于直线对称,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为奇函数,且当时,.当时,的最大值为,最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某投资公司投资甲、乙两个项目所获得的利润分别是P(亿元)和Q亿元),它们与投资额t(亿元)的关系有经验公式其中,今该公司将5亿元投资这两个项目,其中对甲项目投资x(亿元),投资这两个项目所获得的总利润为y(亿元),
(1)求y关于x的解析式,
(2)怎样投资才能使总利润最大,最大值为多少?.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定.大桥上的车距与车速和车长的关系满足:为正的常数),假定车身长为,当车速为时,车距为2.66个车身长.
写出车距关于车速的函数关系式;
应规定怎样的车速,才能使大桥上每小时通过的车辆最多?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数有两个极值点,且,则            (    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数的定义域和值域都是),则常数的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面上的线段及点,任取上的一点,线段长度的最小值称为点到线段的距离,记为.设,,若满足,则关于的函数解析式为       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则的表达式为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案