精英家教网 > 高中数学 > 题目详情
已知椭圆的中心是坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)在线段OF上是否存在点M(m,0),使得|MP|=|MQ|?若存在,求出m的取值范围;若不存在,请说明理由.
【答案】分析:(Ⅰ)先确定椭圆的短半轴长,再根据两个焦点和短轴的两个端点恰为一个正方形的顶点,即可求出椭圆的方程;(Ⅱ)分类讨论:(1)若l与x轴重合时,显然M与原点重合,m=0;(2)若直线l的斜率k≠0,则可设l:y=k(x-1),与椭圆的方程联立,确定PQ的中点横坐标,进而可得PQ的中点的坐标,根据|MP|=|MQ|,即可求得m的取值范围.
解答:解:(Ⅰ)因为椭圆的短轴长:2b=2⇒b=1,
又因为两个焦点和短轴的两个端点恰为一个正方形的顶点,所以:b=c⇒a2=b2+c2=2;
故椭圆的方程为:…(4分)
(Ⅱ)(1)若l与x轴重合时,显然M与原点重合,m=0;
(2)若直线l的斜率k≠0,则可设l:y=k(x-1),设P(x1,y1),Q(x2,y2)则:
所以化简得:(1+2k2)x2-4k2x+2k2-2=0;PQ的中点横坐标为:
代入l:y=k(x-1)可得:PQ的中点为N
由于|MP|=|MQ|得到
所以:综合(1)(2)得到:…(14分)
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,充分利用|MP|=|MQ|是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心是坐标原点O,它的短轴长为2,右焦点为F,直线l:x=2与x轴相交于点E,
FE
=
OF
,过点F的直线与椭圆相交于A,B两点,点C和点D在l上,且AD∥BC∥x轴.
(Ⅰ)求椭圆的方程及离心率;
(Ⅱ)求证:直线AC经过线段EF的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心是坐标原点O,它的短轴长为2,右焦点为F,右准线l与x轴相交于点E,
FE
=
OF
,过点F的直线与椭圆相交于A,B两点,点C和点D在l上,且AD∥BC∥x轴.
(I)求椭圆的方程及离心率;
(II)当|BC|=
1
3
|AD|
时,求直线AB的方程;
(III)求证:直线AC经过线段EF的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心是坐标原点O,焦点在x轴上,离心率为
2
2
,又椭圆上任一点到两焦点的距离和为2
2
,过点M(0,-
1
3
)与x轴不垂直的直线l交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津模拟)已知椭圆的中心是坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)在线段OF上是否存在点M(m,0),使得|MP|=|MQ|?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二上学期期中理科数学试卷 题型:解答题

已知椭圆的中心是坐标原点,焦点在坐标轴上,且椭圆过点三点.

(1)求椭圆的方程;

(2)若点为椭圆上不同于的任意一点,,求内切圆的面积的最大值,并指出其内切圆圆心的坐标.

 

查看答案和解析>>

同步练习册答案