精英家教网 > 高中数学 > 题目详情

【题目】已知点F1为椭圆1ab0)的左焦点,在椭圆上,PF1x.

1)求椭圆的方程;

2)已知直线lykx+m与椭圆交于(12),B两点,O为坐标原点,且OAOBO到直线l的距离是否为定值?若是,求出该定值;若不是,请说明理由.

【答案】12)是定值,定值为

【解析】

1)由PF1x轴可得c1,即可得椭圆的左右焦点的坐标,由椭圆的定义求出a的值,由abc的关系求出ab的值,进而求出椭圆的方程;

2)将直线l与椭圆的方程联立求出两根之积,由OAOB,可得0,可得km的关系,求出原点到直线的距离的表达式,可得为定值.

1)令焦距为2,依题意可得F1(﹣10),右焦点F210),

,所以

所以椭圆方程为

2)设Ax1y1),Bx2y2),

整理可得(2k2+1x2+4kmx+2m220

.

所以y1y2=(kx1+m)(kx2+m)=k2x1x2+kmx1+x2+m2k2kmm2

3m22k2+1),

所以原点O到直线l的距离为,为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,侧棱底面,点的中点.

求证:平面

若直线与平面所成角为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂加工的零件按箱出厂,每箱有10个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取4个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有3个次品,则对剩下的6个零件逐一检验.已知每个零件检验合格的概率为0.8,每个零件是否检验合格相互独立,且每个零件的人工检验费为2.

1)设1箱零件人工检验总费用为元,求的分布列;

2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为1.6.现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种类型的题目,此类题目有六个选项ABCDEF,其中有三个正确选项,满分6分,赋分标准为每选对一个得2分,每选错一个扣3分,最低得分为0”.在某校的一次测试中出现了这种类型的题目,已知此题的正确答案是ACD,假定考生作答的答案中选项的个数不超过三个.

1)若甲同学只能判断选项AD是正确的,现在他有两种选择:一种是将AD作为答案,另一种是在BCEF这四个选项中任选一个与AD组成一个含三个选项的答案.则甲同学的最佳选择是哪一种?请说明理由;

2)若乙同学无法判断所有选项,他决定在6个选项中任选3个作为答案:

i)设乙同学此题得分为分,求的分布列;

ii)已知有20名和乙同学情况相同的同学,且这20名考生答案互不相同,他们此题的平均得分为a分,现从这20名考生中任选3名考生,计算得到这3人平均得分为b分,试求a的值及的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:,倾斜角为锐角的直线l过点与单位圆相切.

1)求曲线C的直角坐标方程和直线l的参数方程;

2)设直线l与曲线C交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧棱垂直于底面的中点,平行于平行于面.

(1)求的长;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品.某市2019年这几类工作岗位的薪资(单位:万元/月)情况如下表所示:

由表中数据可得该市各类岗位的薪资水平高低情况为(

A.数据挖掘>数据开发>数据产品>数据分析

B.数据挖掘>数据产品>数据开发>数据分析

C.数据挖掘>数据开发>数据分析>数据产品

D.数据挖掘>数据产品>数据分析>数据开发

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,求函数的单调递增区间;

(2)设的内角的对应边分别为,且若向量与向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面PAC⊥平面ABC是以AC为斜边的等腰直角三角形,EFO分别为PAPBAC的中点,.

1)设GOC的中点,证明:∥平面

2)证明:在内存在一点M,使FM⊥平面BOE,求点MOAOB的距离.

查看答案和解析>>

同步练习册答案