精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.
解:(Ⅰ)设所求的椭圆方程为:
由题意:
所求椭圆方程为:.             ……………………5分
(Ⅱ)若过点的斜率不存在,则
若过点的直线斜率为,即:时,
直线的方程为


因为和椭圆交于不同两点
所以
所以      ①

由已知,则 ②

   ③
将③代入②得:
整理得:
所以代入①式得
,解得
所以
综上可得,实数的取值范围为:
……………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知为坐标原点,为椭圆轴正半轴上的焦点,过且斜率为的直线交与两点,点满足

(Ⅰ)小题1:证明:点上;
(Ⅱ)小题2:设点关于点的对称点为,证明:四点在同一圆上。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆),其焦距为,若),则称椭圆为“黄金椭圆”.
(1)求证:在黄金椭圆)中,成等比数列.
(2)黄金椭圆)的右焦点为为椭圆上的
任意一点.是否存在过点的直线,使轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆)的左、右焦点分别是,以为顶点的菱形的内切圆过焦点.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆=1(a>b>0)与双曲线=1有相同的焦点,则椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设p:方程表示是焦点在y轴上的椭圆;q:三次函数
内单调递增,.求使“”为真命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,椭圆方程为,抛物线方程为.如图所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
已知点,过点作抛物线的切线,切点在第二象限,如图.(Ⅰ)求切点的纵坐标;
(Ⅱ)若离心率为的椭圆恰好经过切点,设切线交椭圆的另一点为,记切线的斜率分别为,若,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在y轴的椭圆的离心率为,则m=     (  )
A. 3或B. 3C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

中,∠ABC=450,∠ACB=600,绕BC旋转一周,记以AB为母线的圆锥为M1,记以AC为母线的圆锥为M2,m是圆锥M1任一母线,则圆锥M2的母线中与m垂直的直线有   ▲ 条

查看答案和解析>>

同步练习册答案