精英家教网 > 高中数学 > 题目详情

在正项等比数列{an}中,a4+a3-a2-a1=5,则a5+a6的最小值为________.

20
分析:设 a2+a1=x,等比数列的公比为q,由条件求得 x=>0,q>1,再由a5+a6 =xq4==5( q2-1++1 ),利用基本不等式求出a5+a6的最小值.
解答:在正项等比数列{an}中,设 a2+a1=x,等比数列的公比为q,则a4+a3 =xq2,a5+a6 =xq4
再由a4+a3-a2-a1=5,可得 xq2=5+x,∴x=>0,q>1.
∴a5+a6 =xq4 ==5•=5( q2+1+)=5( q2-1++2 )≥5 (2+2)=20,
当且仅当q2-1=1时,等号成立,故a5+a6的最小值为20,
故答案为 20.
点评:本题主要考查等比数列的定义和性质,等比数列的通项公式以及基本不等式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正项等比数列{ an }中,若a2•a4•a6=8,则log2a5-
1
2
log2a6=(  )
A、
1
8
B、
1
6
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项等比数列an中,a1<a4=1,若集合A={n|(a1-
1
a1
)+(a2-
1
a2
)+…+(an-
1
an
)≤0,n∈N*}
,则集合A中元素的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项等比数列{an}中,若S2=7,S6=91,则S4的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•楚雄州模拟)在正项等比数列{an}时,a1和a19为方程x2-10x+16=0的两根,则a8•a10•a12等于
64
64

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项等比数列{an}中,Sn为其前n项和,a3=2,S4=5S2,则a5=
8
8

查看答案和解析>>

同步练习册答案