精英家教网 > 高中数学 > 题目详情

以原点为顶点,椭圆=1的左准线为准线的抛物线交椭圆的右准线于A、B两点,则AB的长度为

[  ]

A.2
B.4
C.8
D.16
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)
的离心率为
1
2
,上、下顶点分别为A1,A2,椭圆上的点到上焦点F1的距离的最小值为1.
(1)求椭圆C的标准方程.
(2)以原点为顶点,F1为焦点的抛物线上的点P(非原点)处的切线与x轴,y轴分别交于Q、R两点,若
PQ
PR
,求λ的值.
(3)是否存在过点(0,m)的直线l,使得l与椭圆相交于A、B两点(A、B不是上、下顶点)且满足
A1A
A1B
=0
,若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点为F1(-1,0)、F2(1,0),直线x=4是它的一条准线.
(1)求椭圆的方程;
(2)设A1、A2分别是椭圆的左顶点和右顶点,P是椭圆上满足|PA1|-|PA2|=2的一点,求tan∠A1PA2的值;
(3)若过点(1,0)的直线与以原点为顶点、A2为焦点的抛物线相交于点M、N,求MN中点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知椭圆C的焦点在x轴上,中心在原点,离心率e=
3
3
,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.
(I)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1,A2,点M是椭圆上异于Al,A2的任意一点,设直线MA1,MA2的斜率分别为kMA1kMA2,证明kMA1kMA2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区模拟)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率为
2
2
.以原点为圆心,椭圆的短轴长为直径的圆与直线x-y+
2
=0相切.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 如图,若斜率为k(k≠0)的直线l与x轴、椭圆C顺次相交于点A,M,N(A点在椭圆右顶点的右侧),且∠NF2F1=∠MF2A.
(ⅰ)求证:直线l过定点(2,0);
(ⅱ)求斜率k的取值范围.

查看答案和解析>>

同步练习册答案