精英家教网 > 高中数学 > 题目详情
已知正数a,b,c满足:ab+bc+ca=1.
(1)求证:(a+b+c)2≥3;(2)求a
bc
+b
ac
+c
ab
的最大值.
(1)∵a2+b2+c2≥ab+bc+ca
∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≥3(ab+bc+ca)=3
当且仅当a=b=c取等号,故原不等式成立;
(2)∵a
bc
≤a×
b+c
2
=
ab+ac
2

b
ac
≤b×
a+c
2
=
ab+bc
2

c
ab
≤c×
a+b
2
=
ac+bc
2

a
bc
+b
ac
+c
ab
≤ab+bc+ca=1
当且仅当a=b=c取等号,
a
bc
+b
ac
+c
ab
的最大值为1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知0<x<
1
3
,则x(1-3x)取最大值时x的值是(  )
A.
1
2
B.
1
3
C.
1
6
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a>b>0,则a+
1
b(a-b)
的最小值为(  )
A.2B.3C.4D.2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设M是△ABC内一点,且
AB
AC
=4
3
,∠BAC=30°
,定义f(M)=(m,n,p),其中m,n,p分别是△MBC,△MCA,△MAB的面积,若f(M)=(1,x,y),则
1
x
+
4
y
的最小值
(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

要在墙上开一个上半部为半圆形、下部为矩形的窗户(如图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列不等式一定成立的是(  )
A.x2+
1
4
>x
B.sinx+
1
sinx
≥2(x∈(0,π))
C.
b
a
b+1
a+1
(a>0,b>0)
D.x+
1
x-1
≥3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)求函数y=
x2-2x+1
x-2
(x<2)的最大值
(2)函数y=loga(x+3)(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,求
1
m
+
2
n
的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知关于x的函数y=
x2+1+c
x2+c

(1)若c=-1,求该函数的值域.
(2)当c满足什么条件时,该函数的值域为[2,+∞)?说明你的理由.
(3)求证:若c>1,则y
1+c
c

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则函数的最小值是       

查看答案和解析>>

同步练习册答案