精英家教网 > 高中数学 > 题目详情
13.如图,AB是圆O的直径,P是圆弧$\widehat{AB}$上的点,M,N是直径AB上关于O对称的两点,且AB=4,MN=2,则$\overrightarrow{PM}$•$\overrightarrow{PN}$等于(  )
A.3B.5C.6D.7

分析 建立坐标系,设P(2cosα,2sinα),求出$\overrightarrow{PM}$,$\overrightarrow{PN}$的坐标,再计算数量积.

解答 解:以O为原点,以AB为x轴建立坐标系,
则M(-1,0),N(1,0),设P(2cosα,2sinα),
∴$\overrightarrow{PM}$=(-1-cosα,-2sinα),$\overrightarrow{PN}$=(1-2cosα,-2sinα),
∴$\overrightarrow{PM}•\overrightarrow{PN}$=(-1-2cosα)(1-2cosα)+4sin2α=4cos2α-1+4sin2α=3,
故选:A.

点评 本题考查了平面向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且Sn=2an-2,数列{bn}是首项为1,公差为2的等差数列.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=an+bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=f(x)满足条件f(2x)=3x2+1,求:
(1)函数f(x)的解析式;
(2)判断函数f(x)的奇偶性;
(3)研究函数f(x)在[-3,6]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设△ABC的内角A,B,C所对的边分别为a,b,c,若b=acosC+csinA,则A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知异面直线a,b所成的角为60°,过空间一定点P作直线l,是l与a,b所成的角均为60°,这样的直线l有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1的图象向左平移$\frac{π}{8}$个单位长度,再向下平移1个单位长度,得到函数g(x)的图象,则函数g(x)具有性质①③.(填入所有正确性质的序号)
①最大值为$\sqrt{2}$,图象关于直线x=$\frac{3π}{4}$对称;
②在(-$\frac{π}{2}$,0)上单调递增,且为偶函数;
③最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={y|y=x2+2x},B={y|y=x2-2x},则A∩B=(  )
A.{y|y≥-1}B.C.{(0,0)}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={x|x(x-3)≥0},B={x|x<1},则A∩B=(  )
A.(-∞,0]∪[3,+∞)B.(-∞,1)∪[3,+∞)C.(-∞,1)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x2+ax+a)$\sqrt{1-2x}$.
( I)当a=$\frac{17}{3}$时,求f(x)的极值;
( II)若f(x)在区间(0,$\frac{1}{4}$)上单调递增,求a的取值范围.

查看答案和解析>>

同步练习册答案