精英家教网 > 高中数学 > 题目详情
169、已知关于x的方程ax2+bx-4=0(a,b∈R,且a>0)有两个实数根,其中一个根在区间(1,2)内,
则a+b的取值范围为
(-ω,4)
分析:利用零点存在定理,构造函数使得f(1)•f(2)<0,求出a、b的范围即可.
解答:解:关于x的方程ax2+bx-4=0(a,b∈R,且a>0)有两个实数根,
其中一个根在区间(1,2)内,令f(x)=ax2+bx-4即:方程对应的函数图象在(1,2)内与x轴有一个交点,
满足f(1)•f(2)<0,
∴(a+b-4)(4a+2b-4)<0
(a+b-4)(2a+b-2)<0
若a+b-4<0 则-2a-b+2<0,
-a-2<0,a>-2
若a+b-4>0
-2a-b+2>0
-a-2>0  a<-2 (舍)
所以a+b-4<0,a+b<4
故答案为:(-ω,4)
点评:本题考查一元二次方程根与系数的关系,零点存在定理,不等式的解法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=kx,(k≠0)且满足f(x+1)•f(x)=x2+x,函数g(x)=ax,(a>0且a≠1).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数f(x)为R上的增函数,h(x)=
f(x)+1
f(x)-1
(f(x)≠1)
,问是否存在实数m使得h(x)的定义域和值域都为[m,m+1]?若存在,求出m的值;若不存在,请说明理由;
(Ⅲ)已知关于x的方程g(2x+1)=f(x+1)•f(x)恰有一实数解为x0,且x0∈(
1
4
1
2
)
求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宿迁一模)【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,已知AB,CD是圆O的两条弦,且AB是线段CD的 垂直平分线,若AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换(本小题满分10分)
已知矩阵M=
21
1a
的一个特征值是3,求直线x-2y-3=0在M作用下的新直线方程.
C.选修4-4:坐标系与参数方程(本小题满分10分)
在平面直角坐标系xOy中,已知曲线C的参数方程是
x=cosα
y=sinα+1
(α是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲(本小题满分10分)
已知关于x的不等式|ax-1|+|ax-a|≥1的解集为R,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+ax+b=0的两根均在区间(-1,1)内,则
a+b-2
a+1
的取值范围是
(-∞,
1
3
) ∪(3,+∞)
(-∞,
1
3
) ∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州二模)已知函数f(x)=ax2+bx+c和函数g(x)=ln(1+x2)+ax(a<0).
(Ⅰ)求函数g(x)的单调区间;
(Ⅱ)已知关于x的方程f(x)=x没有实数根,求证方程f(f(x))=x也没有实数根;
(Ⅲ)证明:(1+
1
22
)(1+
1
42
)(1+
1
82
)…(1+
1
22n
)<e(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•徐汇区二模)已知关于x的方程x2-ax+ab=0,其中a,b为实数,且a≠0.
(1)若x=1-
3
i (i
为虚数单位)是该方程的一个根,求a,b的值;
(2)当该方程没有实数根时,证明:
b
a
1
4

查看答案和解析>>

同步练习册答案