精英家教网 > 高中数学 > 题目详情
已知实数a>0,且2a,1,a2+3按某种顺序排列成等差数列.
(Ⅰ)求实数a的值;
(Ⅱ)若等差数列{an}的首项和公差都为a,等比数列{bn}的首项和公比都为a,数列{an}和{bn}的前n项和分别为Sn,Tn,且
Tn+2
2n
>Sn-238,求满足条件的自然数n的最大值.
考点:等差数列的性质,等差数列的前n项和
专题:等差数列与等比数列
分析:(Ⅰ)分类讨论,三项分别为等差中项,解方程可得;
(Ⅱ)由(Ⅰ)可得an和bn,进而可得Sn和Tn,代入已知可得n的不等式,解不等式结合n为自然数可得.
解答: 解(Ⅰ)①若2a为等差中项,则有4a=a2+4解得a=2,符合题意;
②若1为等差中项,则有2=2a+a2+3解得a=-1,不符合题意,(舍去);
③若a2+3为等差中项,则有2(a2+3)=2a+1,即2a2-2a+5=0,△<0方程无解;
综上可得a=2
(Ⅱ)由(Ⅰ)知an=2+2(n-1)=2n,bn=2n
∴Sn=
n(2+2n)
2
=n2+n,Tn=
2(1-2n)
1-2
=2n+1-2,
由已知
Tn+2
2n
>Sn-238可得2>n2+n-238,即n(n+1)<240,
即-16<n<15,又n为正整数,n的最大值为14.
点评:本题主要考查等差数列、等比数列等基础知识,考查运算求解能力和应用意识,考查分类整合的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若
MA
MB
=0,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足z(1-i)=2i,其中i为虚数单位,则|z|=(  )
A、1
B、
2
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e2x+1-ax+1,a∈R.
(1)若曲线y=f(x)在点(0,f(0))处的切线与直线x+ey+1=0垂直,求a的值;
(2)求函数f(x)的单调区间;
(3)设a<2e3,当x∈[0,1]时,都有f(x)≥1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+y2=1(a>1)的左右焦点分别为F1,F2,其中F2也是抛物线C2:y2=2px(p>0)的焦点,且点A(x0,2)在抛物线上,|AF2|=2.
(Ⅰ)求椭圆C1和抛物线C2的方程;
(Ⅱ)如图点B位于椭圆短轴的下端点,M,N分别是椭圆和圆x2+y2=1位于y轴右侧的动点,且直线BN的斜率是直线BN斜率的2倍.证明:直线MN过定点并求出其坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax3+bx
,a,b是都不为零的常数.
(1)若函数f(x)在R上是单调函数,求a,b满足的条件;
(2)设函数g(x)=f′(x)-b-ex,若g(x)有两个极值点x1,x2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

cos
π
11
cos
11
cos
11
cos
11
cos
11
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥C-OAB中,CO⊥平面AOB,OA=OB=2OC=2,AB=2
2
,D为AB的中点.
(Ⅰ)求证:AB⊥平面COD;
(Ⅱ)若动点E满足CE∥平面AOB,问:当AE=BE时,平面ACE与平面AOB所成的锐二面角是否为定值?若是,求出该锐二面角的余弦值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}前n项和为Sn,已知(a2-2)3+2013(a2-2)=sin
2014π
3
,(a2013-2)3+2013(a2013-2)=cos
2015π
6
,则S2014=
 

查看答案和解析>>

同步练习册答案