分析 (I)曲线C1的参数方程为$\left\{\begin{array}{l}{x=-3+t}\\{y=-1-t}\end{array}\right.$(t为参数),相加可得普通方程.圆C2的极坐标方程为ρ=4$\sqrt{2}$sin($\frac{3π}{4}$-θ),展开可得:ρ2=$4\sqrt{2}×\frac{\sqrt{2}}{2}ρ$(cosθ+sinθ),利用互化公式可得直角坐标方程.
(Ⅱ)求出圆心到直线的距离d,可得|MN|的最小值=$\sqrt{{d}^{2}-{r}^{2}}$.
解答 解:(I)曲线C1的参数方程为$\left\{\begin{array}{l}{x=-3+t}\\{y=-1-t}\end{array}\right.$(t为参数),相加可得普通方程:x+y=-4.
圆C2的极坐标方程为ρ=4$\sqrt{2}$sin($\frac{3π}{4}$-θ),展开可得:ρ2=$4\sqrt{2}×\frac{\sqrt{2}}{2}ρ$(cosθ+sinθ),
可得直角坐标方程:x2+y2=4x+4y.
(Ⅱ)由(x-2)2+(y-2)2=8,可得圆心C2(2,2),半径r=2$\sqrt{2}$.
圆心到直线的距离d=$\frac{|2+2+4|}{\sqrt{2}}$=4$\sqrt{2}$,
则|MN|的最小值=$\sqrt{{d}^{2}-{r}^{2}}$=$\sqrt{(4\sqrt{2})^{2}-(2\sqrt{2})^{2}}$=2$\sqrt{6}$.
点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $4+4\sqrt{3}$ | B. | $4+6\sqrt{3}$ | C. | $8+6\sqrt{3}$ | D. | $8+8\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15π}{4}$ | B. | 4π | C. | $\frac{7π}{2}$ | D. | 3π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈[1,2],x2-3x+2>0 | B. | ?x∉[1,2],x2-3x+2>0 | ||
| C. | $?{x_0}∈[{1,2}],{x_0}^2-3{x_0}+2>0$ | D. | $?{x_0}∉[{1,2}],{x_0}^2-3{x_0}+2>0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 3 | C. | $\sqrt{6}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com