【题目】设数列
的前
项和为
,且对任意正整数
,满足
.
(1)求数列
的通项公式.
(2)设
,求数列
的前
项和
.
【答案】(1)
;(2)
.
【解析】
试题分析:(1)由![]()
当
时,
,两式相减得![]()
![]()
![]()
.又当
时,![]()
![]()
![]()
![]()
![]()
是以首项
,公比
的等比数列![]()
的通项公式为
;(2)由(1)知,![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
.
试题解析: (1)因为
,
所以,当
时,
,................................1分
两式相减得
,即
................3分
又当
时,
,即
..........4分
所以
是以首项
,公比
的等比数列,
所以数列
的通项公式为
.......................6分
(2)由(1)知,
,...................7分
则
,①
,②.................8分
②-①得
,................................10分
,................................11分
所以,数列
的前
项和为
..............................12分
科目:高中数学 来源: 题型:
【题目】轮船由甲地逆水匀速行驶至乙地,甲、乙两地相距s(km),水流速度为p(km/h),轮船在静水中的最大速度为q(km/h)(p,q为常数,且q>p),已知轮船每小时的燃料费用与轮船在静水中的速度v(km/h)成正比,比例系数为常数k.
(1)将全程燃料费用y(元)表示为静水中速度v(km/h)的函数;
(2)若s=100,p=10,q=110,k=2,为了使全程的燃料费用最少,轮船的实际行驶速度应为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知随机变量
的取值为不大于
的非负整数值,它的分布列为:
| 0 | 1 | 2 |
| n |
|
|
|
|
|
|
其中
(
)满足:
,且
.
定义由
生成的函数
,令
.
(I)若由
生成的函数
,求
的值;
(II)求证:随机变量
的数学期望
,
的方差
;
(
)
(Ⅲ)现投掷一枚骰子两次,随机变量
表示两次掷出的点数之和,此时由
生成的函数记为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过
的有20人,不超过
的有10人.在20名女性驾驶员中,平均车速超过
的有5人,不超过
的有15人.
(Ⅰ)完成下面的列联表,并判断是否有
的把握认为平均车速超过
的人与性别有关;
平均车数超过
| 平均车速不超过
| 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随即抽取3辆,记这3辆车中驾驶员为女性且车速不超过
的车辆数为
,若每次抽取的结果是相互独立的,求
的分布列和数学期望
参考公式:
,其中
.
参考数据:
| 0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班从6名班干部中(其中男生4人,女生2人),任选3人参加学校的义务劳动.
(1)设所选3人中女生人数为ξ,求ξ的分布列;
(2)求男生甲或女生乙被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,BC=CC1=4,D是A1C1中点.
![]()
(1)求证:A1B∥平面B1CD;
(2)当三棱锥C-B1C1D体积最大时,求点B到平面B1CD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地方政府要将一块如图所示的直角梯形ABCD空地改建为健身娱乐广场.已知AD//BC,
百米,
百米,广场入口P在AB上,且
,根据规划,过点P铺设两条相互垂直的笔直小路PM,PN(小路的宽度不计),点M,N分别在边AD,BC上(包含端点),
区域拟建为跳舞健身广场,
区域拟建为儿童乐园,其它区域铺设绿化草坪,设
.
(1)求绿化草坪面积的最大值;
(2)现拟将两条小路PNM,PN进行不同风格的美化,PM小路的美化费用为每百米1万元,PN小路的美化费用为每百米2万元,试确定M,N的位置,使得小路PM,PN的美化总费用最低,并求出最小费用.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com