精英家教网 > 高中数学 > 题目详情
(A)(不等式选做题)不等式|x+1|-|x-2|>2的解集为
(
3
2
,+∞)
(
3
2
,+∞)

(B)(几何证明选做题)如图,已知Rt△ABC的两条直角边AC,BC的长分别为6cm,8cm,以AC为直径的圆与AB交于点D,则AD=
18
5
(或3.6)
18
5
(或3.6)
cm.
(C)(坐标系与参数方程选做题)圆C的参数方程
x=1+cosα
y=1-sinα
(α为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ=1,则直线l与圆C的交点的直角坐标是
(0,1),或(2,1)
(0,1),或(2,1)
分析:(A)根据绝对值的意义求出不等式|x+1|-|x-2|>2的解集.
(B)设AD=xcm,由勾股定理可得 AB=10cm,再由圆的切割线定理可得64=10(10-x),由此求得x的值.
(C)把圆C的参数方程化为普通方程,把直线l的极坐标方程化为直角坐标方程,再代入圆的方程解的交点的坐标.
解答:解:(A)|x+1|-|x-2|表示数轴上的x对应点到-1对应点的距离减去它到2对应点的距离,而数轴上的
3
2
对应点到-1对应点的距离减去它到2对应点的距离正好等于2,
故不等式|x+1|-|x-2|>2的解集为 (
3
2
,+∞)

(B)设AD=x cm,∵Rt△ABC的两条直角边AC,BC的长分别为6cm,8cm,由勾股定理可得 AB=10 cm,
再由圆的切割线定理可得 BC2=AB•BD,即 64=10(10-x),解得 x=3.6,
故答案为 3.6.
(C)圆C的参数方程
x=1+cosα
y=1-sinα
(α为参数),化为普通方程成为  (x-1)2+(y-1)2=1,
直线l的极坐标方程为ρsinθ=1,化为直角坐标方程为 y=1,代入圆的方程解得 x=0,或 x=2,
故点C 的坐标为 (0,1),或(2,1),
故答案为 (0,1),或(2,1).
点评:本题主要考查绝对值不等式的解法,圆的切割线定理的应用,把极坐标方程化为直角坐标方程的方法,求两曲线的交点坐标,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A.(不等式选做题)不等式|3x-6|-|x-4|>2x的解集为
 


B.(几何证明选做题)如图,直线PC与圆O相切于点C,割线PAB经过圆心O,
弦CD⊥AB于点E,PC=4,PB=8,则CE=
 

C.(坐标系与参数方程选做题)在极坐标系中,圆ρ=4cosθ的圆心到直线ρsin(θ+
π
4
)=2
2
的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是
 

B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=
 

精英家教网
C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1
x=3+cosθ
y=sinθ
 (θ为参数)和曲线C2:p=1上,则|AB|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是
{x|x≥6或x≤-4}
{x|x≥6或x≤-4}

B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是
(1,
2
(1,
2

C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=2
2
,BE=1,BF=2,若CE与圆相切,则线段CE的长为
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:(考生注意:请在下列三题中任选一题作答,如果多做,则按所做第一题评分)
A.(不等式选做题)不等式
x+5
(x-1)2
≥2
的解集是
[-
1
2
,1)∪(1,3]
[-
1
2
,1)∪(1,3]

B.(几何证明选做题) 如图,⊙O的直径AB=6cm,P是延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,若∠CAP=30°,则PC=
3
3
3
3

C.(坐标系与参数方程选做题)已知直线x+2y-4=0与
x=2-3cosθ
y=1+3sinθ
(θ为参数)相交于A、B两点,则|AB|=
6
6

查看答案和解析>>

同步练习册答案