设函数f(x)=ax3-3x2,(a∈R),且x=2是y=f(x)的极值点.
(Ⅰ)求实数a的值,并求函数的单调区间;
(Ⅱ)求函数g(x)=ex•f(x)的单调区间.
分析:(1)先对函数f(x)求导,根据f′(2)=0可求出a的值,再由导数大于0时原函数单调递增,导数小于0时原函数单调递减可得答案.
(2)先求出函数g(x)的解析式然后求导,再由导数大于0时原函数单调递增,导数小于0时原函数单调递减可得答案.
解答:解:(Ⅰ)f′(x)=3ax
2-6x=3x(ax-2),因为x=2是函数y=f(x)的极值点,
所以f′(2)=0,即6(2a-2)=0,因此a=1.
经验证,当a=1时,x=2是函数y=f(x)的极值点.所以f′(x)=3x
2-6x=3x(x-2).
所以y=f(x)的单调增区间是(-∞,0),(2,+∞);单调减区间是(0,2)
(Ⅱ)g(x)=e
x(x
3-3x
2),
g′(x)=e
x(x
3-3x
2+3x
2-6x)=e
x(x
3-6x)=
x(x+)(x-)ex,
因为e
x>0,所以,y=g(x)的单调增区间是
(-,0),
(,+∞);
单调减区间是
(-∞,-),
(0,).
点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.