精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax3-3x2,(a∈R),且x=2是y=f(x)的极值点.
(Ⅰ)求实数a的值,并求函数的单调区间;
(Ⅱ)求函数g(x)=ex•f(x)的单调区间.
分析:(1)先对函数f(x)求导,根据f′(2)=0可求出a的值,再由导数大于0时原函数单调递增,导数小于0时原函数单调递减可得答案.
(2)先求出函数g(x)的解析式然后求导,再由导数大于0时原函数单调递增,导数小于0时原函数单调递减可得答案.
解答:解:(Ⅰ)f′(x)=3ax2-6x=3x(ax-2),因为x=2是函数y=f(x)的极值点,
所以f′(2)=0,即6(2a-2)=0,因此a=1.
经验证,当a=1时,x=2是函数y=f(x)的极值点.所以f′(x)=3x2-6x=3x(x-2).
所以y=f(x)的单调增区间是(-∞,0),(2,+∞);单调减区间是(0,2)
(Ⅱ)g(x)=ex(x3-3x2),
g′(x)=ex(x3-3x2+3x2-6x)=ex(x3-6x)=x(x+
6
)(x-
6
)ex

因为ex>0,所以,y=g(x)的单调增区间是(-
6
,0)
(
6
,+∞)

单调减区间是(-∞,-
6
)
(0,
6
)
点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案