在如图的多面体中,
平面
,
,
,
,![]()
,
,
,
是
的中点.![]()
(1)求证:
平面
;
(2)求证:
;
(3)求三棱锥
的体积.
(1)详见解析;(2)详见解析;(3)三棱锥
的体积为
.
解析试题分析:(1)证明四边形
为平行四边形,进而得到
,再利用直线与平面平行的判定定理得到
平面
;(2)过点
作
交
于点
,连接
、
、
,先证明
平面
,于是得到
平面
,从而得到
,再证明四边形
为菱形,从而得到
,利用直线与平面垂直的判定定理得到
平面
,从而得到
;(3)由
平面
,由
,得到
平面
,从而将三棱锥
的体积的计算变换成以点
为顶点,以
所在平面为底面的三棱锥来计算体积.
试题解析:(1)∵AD∥EF,EF∥BC,∴AD∥BC.
又∵BC=2AD,G是BC的中点,∴AD//BG,
∴四边形ADGB是平行四边形,∴AB∥DG.
∵AB?平面DEG,DG?平面DEG,∴AB∥平面DEG.![]()
(2)证明:∵EF⊥平面AEB,AE?平面AEB,∴EF⊥AE,
又AE⊥EB,EB∩EF=E,EB,EF?平面BCFE,∴AE⊥平面BCFE.
过D作DH∥AE交EF于H,则DH⊥平面BCFE.
∵EG?平面BCFE,∴DH⊥EG.
∵AD∥EF,DH∥AE,∴四边形AEHD平行四边形,∴EH=AD=2,
∴EH=BG=2,又EH∥BG,EH⊥BE,
∴四边形BGHE为正方形,∴BH⊥EG,
又BH∩DH=H,BH?平面BHD,DH?平面BHD,∴EG⊥平面BHD.
∵BD?平面BHD,∴BD⊥EG.(10分)
(3)∵
⊥平面
,EF//AD,∴AD⊥平面
,故三棱锥A-BED的高为AD
∵
,∴S△AEB =
=![]()
∴
=
S△AEB=
(14分)
考点:1.直线与平面平行;2.异面直线垂直;3.等体积法计算三棱锥的体积
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.![]()
(1)求证:AC1∥平面CDB1;
(2)求三棱锥D-B1C1C的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD丄CD,AB//CD,AB=AD=
CD=2,点M在线段EC上.![]()
(I)当点M为EC中点时,求证:
面
;
(II)求证:平面BDE丄平面BEC;
(III)若平面说BDM与平面ABF所成二面角锐角,且该二面角的余弦值为
时,求三棱锥M-BDE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .![]()
![]()
(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当f(x)取得最大值时,求二面角D-BF-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为
,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.![]()
(1)求该几何体的体积V;
(2)求该几何体的表面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知一个几何体的三视图如图所示。(1)求此几何体的表面积;(2)如果点
在正视图中所示位置:
为所在线段中点,
为顶点,求在几何体表面上,从
点到
点的最短路径的长。![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com