如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2
(1)求证:ADB'D;
(2)求三棱锥A'-AB'D的体积。
(1)详见解析;(2)体积.
解析试题分析:(1)在立体几何中证明直线与平面垂直,一般有以下两种方法:一是通过线面垂直来证明;二是用勾股定理来证明.在本题中,证明哪条直线垂直哪个平面?在正三棱柱中,因为为中点,所以,由此可得平面,从而.另外,求出三边的长,用勾股定理也可证得.
(2)求三棱锥的体积一定要注意顶点的选择.思路一、连结交于点,则为的中点,所以点到平面的距离等于点到平面的距离,所以可转化为求三棱锥即三棱锥的体积,这样求就很简单了.思路二、转化为求三棱锥的体积.
试题解析:(1)法一、在正三棱柱中,平面平面,平面平面,
又因为,平面,所以平面,
又平面,所以. 6分
法二、易得由勾股定理得. 6分
(2)法一、.
法二、. 12分
考点:1、直线与直线垂直的判定;2、三棱锥的体积.
科目:高中数学 来源: 题型:解答题
如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求证:平面BDGH//平面AEF;
(Ⅲ)求多面体ABCDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正三棱柱ABC—A1B1C1的各棱长都相等,M、E分别是和AB1的中点,点F在BC上且满足BF∶FC=1∶3.
(1)求证:BB1∥平面EFM;
(2)求四面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥的三视图和直观图如下图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.是侧棱上的动点.
(1)求证:;
(2)若为的中点,求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com