精英家教网 > 高中数学 > 题目详情

一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.

(1)求该几何体的体积V;
(2)求该几何体的表面积S.

(1) ; (2)

解析试题分析:(1)由已知可知,该几何体是一个底面是边长为1的正方形且高为的平行六面体。(2)由三视图分析可知此平行六面体上下底面为边长为1的正方形,前后两个面是平行四边形,左右两个面是矩形。详见解析。

试题解析:解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为.
所以V=1×1×.
(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1
所以AA1=2,侧面ABB1A1,CDD1C1均为矩形,
所以S=2×(1×1+1×+1×2)=6+2.
考点:三视图

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示为一个几何体的直观图、三视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形).

(1)求四棱锥P-ABCD的体积;
(2)若GBC上的动点,求证:AEPG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的三视图和直观图如下图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.是侧棱上的动点.

(1)求证:
(2)若的中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个几何体的三视图如下图所示(单位:),

(1)该几何体是由那些简单几何体组成的;
(2)求该几何体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图的多面体中,平面的中点.

(1)求证:平面
(2)求证:
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,底面,点分别为棱的中点.

(1)求证:平面
(2)求证:平面平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直棱柱中,分别是的中点,.

⑴证明:;
⑵求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△中,,在三角形内挖去一个半圆(圆心在边上,半圆与分别相切于点,与交于点),将△绕直线旋转一周得到一个旋转体。

(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线旋转一周所得旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,分别是的中点.

(1)求证: 底面
(2)求证:平面平面
(3)求三棱锥的体积.

查看答案和解析>>

同步练习册答案