精英家教网 > 高中数学 > 题目详情

(09年济宁质检文)(12分)

数列的前项和记为

(1)求数列的通项公式;

(2)等差数列的前项和有最大值,且,又成等比数列,求

解析:(1)由,可得

两式相减得, ………………………………2分

,  ………………………………………………4分

是首项为1,公比为3的等比数列,

.    ……………………………………………………………………6分

(2)设的公差为

,于是,   …………………………………8分

故可设

由题意可得

解得

∵等差数列的前项和有最大值,

,   …………………………………………………………10分

. ………………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年济宁质检文)(14分)

       已知函数(a,b为常数)的图像在处有公切线

       (1)求实数a的值;

(2)求函数的极大值和极小值;

(3)关于x的方程有几个不同的实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年济宁质检文)(14分)

   已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率为

(1)求椭圆C的标准方程;

(2)过椭圆C的右焦点F作直线l交椭圆CAB两点,交y轴于M点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年济宁质检文)(12分)

  如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MNC点,已知|AB|=3米,|AD|=2米 .

(1)要使矩形AMPN的面积大于32平方米,则AN的长度应在什么范围内?

(2)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年济宁质检文)(12分)

  设函数

(1)求函数的单调区间;

(2)若当时,不等式恒成立,求实数的取值范围.

 

查看答案和解析>>

同步练习册答案