【题目】如图,平面
平面
,其中
为矩形,
为梯形,
,
,
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若二面角
的平面角的余弦值为
,求
的长.
【答案】(1)见解析;(2)AB=
.
【解析】分析:(Ⅰ)由线面垂直的性质可得
平面
,从而得
,结合
,利用线面垂直的判定定理可得
平面
;(Ⅱ)设
,以为
原点,
所在的直线分别为
轴,
轴建立空间直角坐标系,平面ABF的法向量可取
,利用向量垂直数量积为零列方程组求得平面
的法向量
),利用空间向量夹角余弦公式可得结果.
详解:(Ⅰ)
平面
平面
,且
为矩形,
平面
,
又
平面
,
,
又
且![]()
平面
.源:Z+xx+k.Com]
(Ⅱ)设AB=x.以F为原点,AF,FE所在的直线分别为x轴,y轴建立空间直角坐标系
.则F(0,0,0),A(-2,0,0),E(0,
,0),D(-1,
,0),B(-2,0,x),所以
=(1,-
,0),
=(2,0,-x).
因为EF⊥平面ABF,所以平面ABF的法向量可取
=(0,1,0).
设
=(x1,y1,z1)为平面BFD的法向量,则![]()
所以,可取
=(
,1,
).
因为cos<
,
>=
=
,得x=
,所以AB=
.
![]()
科目:高中数学 来源: 题型:
【题目】如图所示,近日我渔船编队在岛
周围海域作业,在岛
的南偏西20°方向有一个海面观测站
,某时刻观测站发现有不明船只向我渔船编队靠近,现测得与
相距31海里的
处有一艘海警船巡航,上级指示海警船沿北偏西40°方向,以40海里/小时的速度向岛
直线航行以保护我渔船编队,30分钟后到达
处,此时观测站测得
间的距离为21海里.
![]()
(Ⅰ)求
的值;
(Ⅱ)试问海警船再向前航行多少分钟方可到岛
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某海面上有
、
、
三个小岛(面积大小忽略不计),
岛在
岛的北偏东
方向
处,
岛在
岛的正东方向
处.
![]()
(1)以
为坐标原点,
的正东方向为
轴正方向,
为单位长度,建立平面直角坐标系,写出
、
的坐标,并求
、
两岛之间的距离;
(2)已知在经过
、
、
三个点的圆形区域内有未知暗礁,现有一船在
岛的南偏西
方向距
岛
处,正沿着北偏东
行驶,若不改变方向,试问该船有没有触礁的危险?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分) ![]()
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.![]()
(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为
,求线段AH的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com