精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(
1
3
)x-log2x
,正实数a、b、c满足f(c)<0<f(a)<f(b),若实数d是函数f(x)的一个零点,那么下列5个判断:①d<a;②d>b;③d<c;④c<a;⑤a<b.其中可能成立的个数为(  )
A、1B、2C、3D、4
分析:根据函数的单调性的性质,我们可以判断出函数f(x)=(
1
3
)x-log2x
为减函数,再由正实数a、b、c满足f(c)<0<f(a)<f(b),若实数d是函数f(x)的一个零点,我们易判断出a,b,c,d的大小,进而得到答案.
解答:解:∵函数f(x)=(
1
3
)x-log2x
为减函数,
又∵正实数a、b、c满足f(c)<0<f(a)<f(b),
实数d是函数f(x)的一个零点
∴f(c)<f(d)<f(a)<f(b),
∴c>d>a>b
故①②正确
故选B
点评:本题考查的知识点是对数函数的单调性,指数函数的单调性,函数的零点,其中根据已知中函数的解析式,结合函数的单调性的性质,判断出函数f(x)=(
1
3
)x-log2x
为减函数,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案