精英家教网 > 高中数学 > 题目详情
已知函数:f(x)=alnx-ax-3(a∈R).
(I)讨论函数f(x)的单调性;
(II)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45o,是否存在实数m使得对于任意的t∈[1,2],函数g(x)=x3+x2[f′(x)+
m
2
]在区间(t,3)上总不是单调函数?若存在,求m的取值范围;否则,说明理由;
(Ⅲ)求证:
ln2
2
×
ln3
3
×
ln4
4
×
ln5
5
×…×
lnn
n
1
n
(n≥2,n∈N*).
分析:(I)在求单调区间时要注意函数的定义域以及对参数a的讨论情况;
(II)点(2,f(2))处的切线的倾斜角为45°,即切线斜率为1,即f'(2)=1,可求a值,代入得g(x)的解析式,由t∈[1,2],且g(x)在区间(t,3)上总不是单调函数可知:g′(1)<0,g′(2)<0,g′(3)>0,于是可求m的范围.
(Ⅲ)判断lnx<x-1对一切x∈(1,+∞)成立,进而可得0<
lnn
n
n-1
n
,即可证得结论.
解答:(I)解:f′(x)=
a(1-x)
x
(x>0)
  (1分),
当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);
当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];
当a=0时,f(x)不是单调函数(4分)
(II)解:f′(2)=-
a
2
=1得a=-2,f(x)=-2lnx+2x-3
∴g(x)=x3+(
m
2
+2)x2-2x,
∴g'(x)=3x2+(m+4)x-2(6分)
∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=-2
∴g′(t)<0,g′(3)>0   (8分)
由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,
所以有
g′(1)<0
g′(2)<0
g′(3)>0
,∴存在-
37
3
<m<-9(10分)
(Ⅲ)证明:令a=-1此时f(x)=-lnx+x-3,所以f(1)=-2,
由(I)知f(x)=-lnx+x-3在(1,+∞)上单调递增,
∴当x∈(1,+∞)时f(x)>f(1),即-lnx+x-1>0,
∴lnx<x-1对一切x∈(1,+∞)成立,(12分)
∵n≥2,n∈N*,则有0<lnn<n-1,
0<
lnn
n
n-1
n

ln2
2
×
ln3
3
×
ln4
4
×
ln5
5
×…×
lnn
n
1
2
×
2
3
×
3
4
×
4
5
×…×
n-1
n
1
n
(n≥2,n∈N*).…(14分)
点评:本题考查利用函数的导数来求函数的单调区间,与函数结合证明不等式问题,常用的解题思路是利用前面的结论构造函数,利用函数的单调性,对于函数取单调区间上的正整数自变量n有某些结论成立,进而解答出这类不等式问题的解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f-1(x+a)互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与y=f-1(ax)互为反函数,则称y=f(x)满足“a积性质”.
(1)判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;
(2)求所有满足“2和性质”的一次函数;
(3)设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示,则方程f[g(x)]=0有且仅有
6
个根;方程f[f(x)]=0有且仅有
5
个根.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(
1
2
,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为
5
4
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈R,有下列4个命题:
①若f(1+2x)=f(1-2x),则y=f(x)的图象关于直线x=1对称;
②y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
③若y=f(x)为偶函数,且y=f(2+x)=-f(x),则y=f(x)的图象关于直线x=2对称;
④若y=f(x)为奇函数,且f(x)=f(-x-2),则y=f(x)的图象关于直线x=1对称.
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是奇函数,当x>0时,f(x)=x3+1.设f(x)的反函数是y=g(x),则g(-28)=
-3
-3

查看答案和解析>>

同步练习册答案