精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)log2x (0<x<1)数列{an}满足f(2an)2n(nN*)

(1) 求数列{an}的通项公式;

(2) 判断数列{an}的单调性.

【答案】1ann 2递增

【解析】试题分析:(1)根据条件可得解方程可得再根据函数f(x)定义域得0<2an<1an<0.所以取(2)研究数列单调性,可研究相邻两项之间大小关系,也可直接利用函数增减性,本题可利用分子有理化得直接判断单调性.

试题解析:解:(1) f(x)log2xf(2an)an2n

所以a2nan10解得an.

因为0<x<1所以0<2an<1所以an<0.

ann.

(2) an1ann1n

1

>0

∴ 数列{an}是递增数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设全集UR,集合A{x|1x4}B{x|2ax3a}

(1)a=-2,求BABUA

(2)BA,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求过点且与曲线相切的直线方程;

(Ⅱ)设,其中为非零实数,若有两个极值点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数yf(x)是定义在(0,+)上的递增函数对于任意的x>0y>0都有f(xy)f(x)f(y)且满足f(2)1.

(1)f(1)f(4)的值;

(2)求满足f(2)f(x3)2x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如右表.

年龄

访谈

人数

愿意

使用

1

[18,28)

4

4

2

[28,38)

9

9

3

[38,48)

16

15

4

[48,58)

15

12

5

[58,68)

6

2

(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?

(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.

(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?

年龄不低于48岁的人数

年龄低于48岁的人数

合计

愿意使用的人数

不愿意使用的人数

合计

参考公式:,其中:n=a+b+c+d.

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.

1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;

2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设为两个同高的几何体,的体积不相等,在等高处的截面积不恒相等,根据祖暅原理可知,( )

A. 充分不必要条件 B. 必要不充分条件

C. 充要条件 D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)设,若的图象与x轴恰有两个不同的交点,求实数a的取值集合.

)求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若存在极值点1,求的值;

(2)若存在两个不同的零点,求证: 为自然对数的底数, ).

查看答案和解析>>

同步练习册答案