精英家教网 > 高中数学 > 题目详情

【题目】已知函数yf(x)是定义在(0,+)上的递增函数对于任意的x>0y>0都有f(xy)f(x)f(y)且满足f(2)1.

(1)f(1)f(4)的值;

(2)求满足f(2)f(x3)2x的取值范围.

【答案】(1)f(1)=0,f(4)=2;(2)(3,5].

【解析】试题分析:(1)xy=1,和令xy=2即可得解;

(2)由函数f(x)在定义域(0,+∞)上是单调递增函数f(2)+f(x-3)≤2即为f(2(x-3))≤f(4),可得,即可得解.

试题解析:

 (1)令xy=1,得f(1)=f(1)+f(1),所以f(1)=0,

xy=2,得f(4)=f(2)+f(2)=1+1=2,所以f(4)=2.

(2)由f(2)=1及f(xy)=f(x)+f(y)可得2=1+1=f(2)+f(2)=f(4).

因为f(2)+f(x-3)≤2.

所以f(2(x-3))≤f(4).

又函数f(x)在定义域(0,+∞)上是单调递增函数,

所以解得3<x≤5.

x的取值范围为(3,5].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣9≤0,x∈R,m∈R}.

(1)若A∩B=[1,3],求实数m的值;

(2)若p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱底面直角梯形,是棱上一点,.

(1)求异面直线所成的角;

(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;

②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;

③线性回归方程必经过点

④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )

A. 0

B. 1

C. 2

D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若当时,求的单调区间;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2-1,g(x)=

(1)求f[g(2)]和g[f(2)]的值;

(2)求f[g(x)]和g[f(x)]的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)log2x (0<x<1)数列{an}满足f(2an)2n(nN*)

(1) 求数列{an}的通项公式;

(2) 判断数列{an}的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;

方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.

方案乙:员工连续三次抽奖,每次中奖率均为,每次中奖均可获奖金400元.

(1)求某员工选择方案甲进行抽奖所获奖金(元)的分布列;

(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题12分)根据国家环保部新修订的环境空气质量标准》规定:居民区PM25年平均浓度不得超过35微克/立方米,PM25的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年20天PM25的24小时平均浓度的监测数据,数据统计如下:

]

组别

PM2.5浓度(微克/立方米)

频数(天)

频率

第一组

3

0.15

第二组

12

0.6

第三组

3

0.15

第四组

2

0.1

)从样本中PM25的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM25的24小时平均浓度超过75微克/立方米的概率;

)求样本平均数,并根据样本估计总体的思想,从PM2.5年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由

查看答案和解析>>

同步练习册答案