精英家教网 > 高中数学 > 题目详情

【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.

非一线

一线

总计

愿生

45

20

65

不愿生

13

22

35

总计

58

42

100

附表:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

由K2= 算得,K2= ≈9.616参照附表,得到的正确结论是(
A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C.有99%以上的把握认为“生育意愿与城市级别有关”
D.有99%以上的把握认为“生育意愿与城市级别无关”

【答案】C
【解析】解:根据列联表所给的数据,代入随机变量的观测值公式, K2= ≈9.616>6.635,
∴有99%以上的把握认为“生育意愿与城市级别有关”,
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足 .

(1)求数列的通项公式

(2)若数列满足

(I)求数列的前项和

(II)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个 列联表;
(2)判断性别与休闲方式是否有关系.

0.05

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有两个命题, :关于 的不等式 ,且 )的解集是 :函数 的定义域为 .如果 为真命题, 为假命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产100件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为500件,产品销售数量为 件时,销售所得的收入为 万元.
(1)该公司这种产品的年生产量为 件,生产并销售这种产品所得到的利润关于当年产量 的函数为 ,求
(2)当该公司的年产量为多少件时,当年所获得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线 (a>0,b>0)的左焦点为F1 , 左顶点为A,过F1作x轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+ ,则该双曲线的离心率取值范围是(
A.(1﹣
B.( ,+∞)
C.(1,2
D.(2 ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+(b8)xaab,当x(3)∪(2,+)时,f(x)<0.

(1)f(x)的解析式;

(2)若不等式f(x)<m的解集为R,求m的取值范围;

(3) 求不等式f(x)<m+18的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个以A1B1C1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知A1B1B1C1=2,A1B1C1=90°,AA1=4,BB1=3,CC1=2,求:

()该几何体的体积;

()截面ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的奇函数满足,且在上是减函数, 是锐角三角形的两个内角,则的大小关系是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案