精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2+(b8)xaab,当x(3)∪(2,+)时,f(x)<0.

(1)f(x)的解析式;

(2)若不等式f(x)<m的解集为R,求m的取值范围;

(3) 求不等式f(x)<m+18的解集

【答案】(1) (2)m> (3)m>时解集为R ,m=时解集为m<时,解集为.

【解析】分析:(1)利用三个“二次”关系,转化为根与系数的问题;

(2)不等式f(x)<m的解集为R,即3x2+3x-18+m恒成立,故

(3)对m分类讨论,解一元二次不等式即可.

详解:(1)由已知得,方程ax2+(b﹣8)x﹣a﹣ab=0的两个根为﹣3,2,

,即

解得a=﹣3,b=5,

∴f(x)=﹣3x2﹣3x+18;

(2) 不等式f(x)<m的解集为R,即﹣3x2﹣3x+18<mR恒成立,

3x2+3x-18+m恒成立,

m>,

(3) 3x2+3x+m

m>时解集为R ,m=时解集为

m<时,解集为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数 若函数 上有3个零点,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正四面体的“骰子”(四个面分别标有1,2,3,4四个数字),掷一次“骰子”三个侧面的数字的和为“点数”,连续抛掷“骰子”两次.
(1)设A为事件“两次掷‘骰子’的点数和为16”,求事件A发生的概率;
(2)设X为两次掷“骰子”的点数之差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.

非一线

一线

总计

愿生

45

20

65

不愿生

13

22

35

总计

58

42

100

附表:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

由K2= 算得,K2= ≈9.616参照附表,得到的正确结论是(
A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C.有99%以上的把握认为“生育意愿与城市级别有关”
D.有99%以上的把握认为“生育意愿与城市级别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=[x3+3x2+(a+6)x+6﹣a]ex在区间(2,4)上存在极大值点,则实数a的取值范围是(
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人独立来该租车点骑游(各组一车一次).设甲、乙不超过两小时还车的概率分别为 ;两小时以上且不超过三小时还车的概率分别为 ;两人租车时间都不会超过四小时.
(1)求甲、乙两人所付租车费用相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量 ,求 的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形的边长为2, . 是边上一点,线段于点.

(1)若的面积为,求的长;

(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线C的参数方程为为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为ρ2﹣4ρcosθ+3=0.
(1)求直线C的普通方程和曲线P的直角坐标方程;
(2)设直线C和曲线P的交点为A、B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣1|+|x﹣2|
(1)求不等式f(x)≤3的解集;
(2)若不等式||a+b|﹣|a﹣b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求实数x的范围.

查看答案和解析>>

同步练习册答案