分析 根据余弦函数的性质,可以求出函数f(x)=|1+2cos3x|的周期,由f(2x)=-f(2x+a)恒成立,可以推出f(2x)的周期为a,然后求出f(x)的周期,从而求解.
解答 解:∵函数f(x)=|1+2cos3x|,
∴函数f(x)的最小正周期为:$\frac{2π}{3}$,
∵f(2x)=-f(2x+a)恒成立,即f(2x)=f(2x+2a),
∴f(2x)的最小正周期为a,
∴f(x)的最小正周期为2a,
∴2a=$\frac{2π}{3}$,
∴a=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.
点评 要知道y=f(x)和y=f(2x)之间的联系和区别,注意函数的周期与绝对值之间的关系,此题主要考查如何求函数的周期.
科目:高中数学 来源: 题型:选择题
| A. | e${\;}^{{x}_{2}}$f(x1)>e${\;}^{{x}_{1}}$f(x2) | B. | e${\;}^{{x}_{2}}$f(x1)<e${\;}^{{x}_{1}}$f(x2) | ||
| C. | e${\;}^{{x}_{1}}$f(x1)>e${\;}^{{x}_{2}}$f(x2) | D. | e${\;}^{{x}_{1}}$f(x1)<e${\;}^{{x}_{2}}$f(x2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com