精英家教网 > 高中数学 > 题目详情

【题目】已知复数z1= +(a2﹣3)i,z2=2+(3a+1)i(a∈R,i是虚数单位).
(1)若复数z1﹣z2在复平面上对应点落在第一象限,求实数a的取值范围;
(2)若虚数z1是实系数一元二次方程x2﹣6x+m=0的根,求实数m值.

【答案】
(1)解:由条件得,z1﹣z2=( -2)+(a2﹣3a﹣4)i

因为z1﹣z2在复平面上对应点落在第一象限,故有

解得﹣2<a<﹣1


(2)解:因为虚数z1是实系数一元二次方程x2﹣6x+m=0的根

所以z1+ = =6,即a=﹣1,

把a=﹣1代入,则z1=3﹣2i, =3+2i,)

所以m=z1 =13


【解析】(1)由题设条件,可先通过复数的运算求出的代数形式的表示,再由其几何意义得出实部与虚部的符号,转化出实数a所满足的不等式,解出其取值范围;(2)实系数一元二次方程x2﹣6x+m=0的两个根互为共轭复数,利用根与系数的关系求出a的值,从而求出m的值.
【考点精析】本题主要考查了复数的定义的相关知识点,需要掌握形如的数叫做复数,分别叫它的实部和虚部才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在区间上单调递减的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图所示,正方形与矩形所在平面互相垂直,

(1)若点分别为的中点,求证:平面平面

(2)在线段上是否存在一点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是(
①P∈a,P∈αaα
②a∩b=P,bβaβ
③a∥b,aα,P∈b,P∈αbα
④α∩β=b,P∈α,P∈βP∈b.
A.①②
B.②③
C.①④
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的函数f(x)满足:
①对任意x,y∈R,都有:f(x+y)=f(x)+f(y)﹣1;
②当x<0时,f(x)>1.
(Ⅰ)试判断函数f(x)﹣1的奇偶性;
(Ⅱ)试判断函数f(x)的单调性;
(Ⅲ)若不等式f(a2﹣2a﹣7)+ >0的解集为{a|﹣2<a<4},求f(5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)= (m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[ ,2]上单调递减,那么mn的最大值为(
A.16
B.18
C.25
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , 已知(a4﹣1)3+2016(a4﹣1)=1,(a2013﹣1)3+2016(a2013﹣1)=﹣1,则下列结论正确的是(
A.S2016=﹣2016,a2013>a4
B.S2016=2016,a2013>a4
C.S2016=﹣2016,a2013<a4
D.S2016=2016,a2013<a4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A、B、C所对的边分别为a、b、c,且 =
(1)求角A的大小;
(2)若a=4,求 b﹣c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,ADBC,AD=AB=DC=BC=1,EPC的中点,面PACABCD

(1)证明:ED∥面PAB

(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

同步练习册答案