精英家教网 > 高中数学 > 题目详情
设a为常数,a∈R,函数f(x)=x2+|x-a|+1,x∈R.
(1)若函数f(x)是偶函数,求实数a的值;
(2)求函数f(x)的最小值.
【答案】分析:(1)根据偶函数的定义,采用比较系数法,可得(x+a)2=(x-a)2对任意的x∈R成立,故可得a=0.
(2)分x≤a与x>a两种情况讨论,结合二次函数的图象与性质加以分析,可得当时,函数在x=a处取得最小值,而当时,函数在x=-处取得最小值;当时,函数在x=处取得最小值.由此即可得到本题的答案.
解答:解:(1)∵函数f(x)为偶函数,∴对任意的x∈R都有f(-x)=f(x),
即(-x)2+|-x-a|+1=x2+|x-a|+1,对任意的x∈R都有|x+a|=|x-a|,
也就是(x+a)2=(x-a)2对任意的x∈R成立,故4ax=0恒成立,可得a=0.
(2)①当x≤a时,
,则函数f(x)在(-∞,a]上单调递减.
所以函数f(x)在(-∞,a]上的最小值为f(a)=a2+1.
,则函数f(x)在上单调递减,在上单调递增.
所以函数f(x)在(-∞,a]上的最小值为
②当x>a时,
,则函数f(x)在上单调递减,在单调递增.
所以函数f(x)在[a,+∞)上的最小值为
,则函数f(x)在[a,+∞)单调递增.
所以函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.
综上所述,可得
时,函数f(x)的最小值是;当时,函数f(x)的最小值是a2+1;
时,函数f(x)的最小值是
点评:本小题主要考查偶函数的概念,考查二次函数的单调性、最值等基础知识以及运算求解能力、分类讨论思想等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足a1=a(a为常数,a∈R),an+1=2n-3an(n∈N*),设bn=
an2n
(n∈N*).
(1)求数列{bn}所满足的递推公式;
(2)求常数c、q使得bn+1-c=q(bn-c)对一切n∈N*恒成立;
(3)求数列{an}通项公式,并讨论:是否存在常数a,使得数列{an}为递增数列?若存在,求出所有这样的常数a;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为常数,a∈R,函数f(x)=x2+|x-a|+1,x∈R.
(1)若函数f(x)是偶函数,求实数a的值;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a为常数,a∈R,函数f(x)=x2+|x-a|+1,x∈R.
(1)若函数f(x)是偶函数,求实数a的值;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为常数,a∈R,函数f(x)=x2+|x﹣a|+1,x∈R.

(1)若函数f(x)是偶函数,求实数a的值;

(2)求函数f(x)的最小值.

查看答案和解析>>

同步练习册答案