已知函数,,图象与轴异于原点的交点M处的切线为,与轴的交点N处的切线为, 并且与平行.
(1)求的值;
(2)已知实数t∈R,求的取值范围及函数的最小值;
(3)令,给定,对于两个大于1的正数,存在实数满足:,,并且使得不等式恒成立,求实数的取值范围.
(1)2 (2) (3)
【解析】
试题分析:
(1)根据题意求出f(x),g(x-1)与x轴交点的坐标,利用切线平行,即导函数在交点处的导函数值相等,即可求出f(x)中参数a的值,进而得到f(2).
(2)可以利用求定义域,求导,求单调性与极值 对比极值与端点值得到的取值范围.进而直接用u替代中的,把问题转化为求解在区间上的最小值,即为一个含参二次函数的最值.则利用二次函数的单调性,即分对称轴在区间的左边,中,右边三种情况进行讨论得到函数的最小值.
(3)对F(x)求导求并确定导函数的符号得到函数F(x)的单调性,有了F(x)的单调性,则要得到不等式,我们只需要讨论m的范围确定的大小关系,再根据单调性得到的大小关系,判断其是否符合不等式,进而得到m的取值范围.
试题解析:
(1) 图象与轴异于原点的交点, 1分
图象与轴的交点, 2分
由题意可得, 即 , 3分
∴, 4分
(2)= 5分
令,在 时,,
∴在单调递增, 6分
图象的对称轴,抛物线开口向上
①当即时, 7分
②当即时, 8分
③当即时,
9分
,
所以在区间上单调递增
∴时, 10分
①当时,有,
,
得,同理,
∴ 由的单调性知 、
从而有,符合题设. 11分
②当时,,
,
由的单调性知 ,
∴,与题设不符 12分
③当时,同理可得,
得,与题设不符. 13分
∴综合①、②、③得 14分
考点:二次函数 导数 单调性 最值
科目:高中数学 来源:2012-2013学年广东省六校高三第 一次联考理科数学试卷(解析版) 题型:解答题
(本小题满分14分)
已知函数,,图象与轴异于原点的交点M处的切线为,与轴的交点N处的切线为, 并且与平行.
(1)求的值;
(2)已知实数t∈R,求函数的最小值;
(3)令,给定,对于两个大于1的正数,
存在实数满足:,,并且使得不等式
恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届广东省高一年级第二学期5月月考数学试卷(解析版) 题型:解答题
(本小题满分12分)已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.
(1)求的解析式;
(2)当,求的值域.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省茂名市高三下学期第二次高考模拟考试理科数学试卷(解析版) 题型:解答题
已知函数,,图象与轴异于原点的交点M处的切线为,与轴的交点N处的切线为, 并且与平行.
(1)求的值;
(2)已知实数t∈R,求函数的最小值;
(3)令,给定,对于两个大于1的正数,
存在实数满足:,,并且使得不等式
恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数,,图象与轴异于原点的交点M处的切线为,与轴的交点N处的切线为, 并且与平行.
(1)求的值;
(2)已知实数t∈R,求的取值范围及函数的最小值;
(3)令,给定,对于两个大于1的正数,存在实数满足:,,并且使得不等式恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com