精英家教网 > 高中数学 > 题目详情
9.若关于x,y的方程组$\left\{{\begin{array}{l}{ax+y-1=0}\\{4x+ay-2=0}\end{array}}\right.$有无数多组解,则实数a=2.

分析 根据题意,若关于x,y的方程组有无数多组解,则直线ax+y-1=0与直线4x+ay-2=0重合,分析可得$\frac{a}{4}$=$\frac{1}{a}$=$\frac{-1}{-2}$,解可得a的值,即可得答案.

解答 解:根据题意,若关于x,y的方程组$\left\{{\begin{array}{l}{ax+y-1=0}\\{4x+ay-2=0}\end{array}}\right.$有无数多组解,
则直线ax+y-1=0与直线4x+ay-2=0重合,
则有$\frac{a}{4}$=$\frac{1}{a}$=$\frac{-1}{-2}$,
解可得a=2,
故答案为:2.

点评 本题考查直线的一般式方程,涉及直线的方程与直线的关系,注意关于x、y的二元一次方程组有无数多组解等价于两直线重合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的右焦点为F2,O为坐标原点,M为y轴上一点,点A是直线MF2与椭圆C的一个交点,且|OA|=|OF2|=2|OM|,则椭圆C的离心率为(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a,b,c,m,n,p都是实数,且a2+b2+c2=1,m2+n2+p2=1.
(Ⅰ)证明|am+bn+cp|≤1;
(Ⅱ)若abc≠0,证明$\frac{{m}^{4}}{{a}^{2}}$+$\frac{{n}^{4}}{{b}^{2}}$+$\frac{{p}^{4}}{{c}^{2}}$≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,三边长分别为a=2,b=3,c=4,则$\frac{sin2A}{sinB}$=$\frac{7}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点M(a,b)与点N(0,-1)在直线3x-4y+5=0的两侧,给出以下结论:
①3a-4b+5>0;
②当a>0时,a+b有最小值,无最大值;
③a2+b2>1;
④当a>0且a≠1时,$\frac{b+1}{a-1}$的取值范围是(-∞,-$\frac{9}{4}$)∪($\frac{3}{4}$,+∞).
正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow a=(cos(\frac{π}{3}+α),1)$,$\overrightarrow b=(1,4)$,如果$\overrightarrow a$∥$\overrightarrow b$,那么$cos(\frac{π}{3}-2α)$的值为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设i为虚数单位,复数$z=\frac{1-2i}{2+i}$,则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,等腰Rt△AOB,OA=OB=2,点C是OB的中点,△AOB绕BO所在的边逆时针旋转一周.
(1)求△ABC旋转一周所得旋转体的体积V和表面积S;
(2)设OA逆时针旋转至OD,旋转角为θ,且满足AC⊥BD,求θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知实数x,y,z满足$\left\{\begin{array}{l}xy+2z=1\\{x^2}+{y^2}+{z^2}=5\end{array}\right.$则xyz的最小值为$9\sqrt{11}-32$.

查看答案和解析>>

同步练习册答案