精英家教网 > 高中数学 > 题目详情

【题目】某餐厅装修,需要大块胶合板张,小块胶合板张,已知市场出售两种不同规格的胶合板。经过测算, 种规格的胶合板可同时截得大块胶合板张,小块胶合板张, 种规格的胶合板可同时截得大块胶合板张,小块胶合板张.已知种规格胶合板每张元, 种规格胶合板每张元.分别用表示购买两种不同规格的胶合板的张数.

(1)用列出满足条件的数学关系式,并画出相应的平面区域;

(2)根据施工需求, 两种不同规格的胶合板各买多少张花费资金最少?并求出最少资金数.

【答案】(1);(2)种胶合板5张, 种胶合板10张花费资金最少,最少资金数为1720元.

【解析】试题分析:(1)先设买胶合板 胶合板付出资金元,根据大块胶合板需要20张,小块胶合板需要50张抽象出满足的条件建立约束条件即可作出可行域;(2根据目标函数利用截距模型平移直线找到最优解,从而可得出最少资金数.

试题解析:(1胶合板 胶合板由题意得到平面区域如图:

2由设花费资金由(1由图可知当 (元,答 型木板张, 型木板张,付出资金最少为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是二次函数,且满足f(0)=1,f(x+1)﹣f(x)=2x+5;函数g(x)=ax(a>0且a≠1)
(1)求f(x)的解析式;
(2)若g(2)= ,且g[f(x)]≥k对x∈[﹣1,1]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=a﹣
(1)若x∈[ ,+∞),①判断函数g(x)=f(x)﹣2x的单调性并加以证明;②如果f(x)≤2x恒成立,求a的取值范围;
(2)若总存在m,n使得当x∈[m,n]时,恰有f(x)∈[2m,2n],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是(
A.
B.y=ex
C.y=lg|x|
D.y=﹣x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若Ai(i=1,2,3,…,n)是△AOB所在平面内的点,且 = ,给出下列说法:
·(1)| |=| |=| |=…=| |
·(2)| |的最小值一定是| |
·(3)点A和点Ai一定共线
·(4)向量 在向量 方向上的投影必定相等
其中正确的个数是(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c且b=c,∠A的平分线为AD,若 =m
(1)当m=2时,求cosA
(2)当 ∈(1, )时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有三个不同的零点 (其中),则的值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于两个定义域相同的函数f(x),g(x),若存在实数m、n使h(x)=mf(x)+ng(x),则称函数h(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和个g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1由函数f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范围;
(3)利用“基函数f(x)=log4(4x+1),g(x)=x﹣1”生成一个函数h(x),使之满足下列件:①是偶函数;②有最小值1;求函数h(x)的解析式并进一步研究该函数的单调性(无需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,底面为菱形,且 是边长为的正三角形,且平面平面,点的中点.

(1)证明: 平面

(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案