精英家教网 > 高中数学 > 题目详情
等差数列{an}中,公差d不为0,且a1,a3,a9恰好是某等比数列的前三项.
(1)求该等比数列的公比;
(2)这个等差数列中是否存在某一项恰好是这个等比数列的第四项,若存在,请求出是等差数列的第几项;若不存在,请说明理由.
分析:(1)由题意可得a32=a1•a9,从而建立关于公差d的方程,解方程可求d,进而求出等比数列的公比;
(2)确定数列的通项,即可求得结论.
解答:解:(1)∵等差数列{an}中,a1,a3,a9恰好是某等比数列的前三项
∴a32=a1•a9
∴(a1+2d)2=a1•(a1+8d),∴d2=a1d,
∵d≠0,∴d,=a1,∴q=
a3
a1
=3;
(2)由(1)知an=a1+(n-1)×a1=na1
∵a1•33=27a1
∴等差数列中第27项恰好是这个等比数列的第四项.
点评:本题考查了等差数列及等比数列的通项公式,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案