精英家教网 > 高中数学 > 题目详情
设数列{an}是公比为q>0的等比数列,Sn是它的前n项和,若
lim
n→+∞
Sn=7
,则此数列的首项a1的取值范围为______.
若该等比数列是一个递增的等比数列,则Sn不会有极限. 因此这是一个无穷递缩等比数列,
设公比为q,则0<|q|<1 亦即,-1<q<0且0<q<1.
而等比数列前n项和Sn=
a1(1-qn)
1-q

由于其中0<q<1,因此
lim
n→∞
qn
=0,
而根据极限的四项运算法则有,
lim
n→+∞
Sn
a1
1-q
 =7

因此a1=7(1-q)=7-7q 解得a1∈(0,7).
故答案为:(0,7).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}是公比大于1的等比数列,Sn为其前n项和,已知S3=7且a1+3、3a2、a3+4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=lna2n+1(n∈N*),求数列{bn}的前n项和Tn
(3)求a2+a5+a8+…+a3n-1+…+a3n+8的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•顺义区二模)设数列{an}是公比为正数的等比数列,a1=3,a3=2a2+9
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3a1+log3a2+log3a3+…+log3an,求数列{
1bn
}
的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公比大小于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(I)求数列{an}的通项公式an
(II)设cn=log2an+1,数列{cncn+2}的前n项和为Tn,是否存在正整数m,使得Tn
1cmcm+1
对于n∈N*恒成立?若存在,求出m的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公比为正数的等比数列,a1=2,a3-a2=12.
(1)求数列{an}的通项公式;
(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn

查看答案和解析>>

同步练习册答案