精英家教网 > 高中数学 > 题目详情

图是某市日至日的空气质量指数趋势图,空气质量指数()小于表示空气质量优良,空气质量指数大于表示空气重度污染,某人随机选择日至日中的某一天到达该市,并停留天.

(1)求此人到达当日空气质量优良的概率;
(2)求此人停留期间至多有1天空气重度污染的概率.

(1);(2).

解析试题分析:(1)从图中找出天内空气质量优良的天数,从而确定此人到达当日空气质量优良的概率;(2)将问题分为两种:一种是没有空气质量重度污染,另一种是只有一天空气质量重度污染,并从图中找出相应的天数,从而确定题中涉及事件的概率.
试题解析:(1)在日至日这天中,只有日、日共天的空气质量优良,所以此人到达当日空气质量优良的概率
(2)根据题意,事件“此人在该市停留期间至多有天空气重度污染”,即“此人到达该市停留期间天空气重度污染或仅有天空气重度污染”.
“此人在该市停留期间天空气重度污染”等价于“此人到达该市的日期是日或日或日”.其概率为
“此人在该市停留期间仅有天空气重度污染”等价于“此人到达该市的日期是日或日或日或日或日”.其概率为
所以此人停留期间至多有天空气重度污染的概率为.
考点:古典概型

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(1)用茎叶图表示这两组数据;.
(2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(3)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于分的次数为,求的分布列和数学期望..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

爸爸和亮亮用4张扑克牌(方块2,黑桃4,黑桃5,梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,爸爸先抽,亮亮后抽,抽出的牌不放回.

(1)若爸爸恰好抽到了黑桃4.
①请把右面这种情况的树形图绘制完整;
②求亮亮抽出的牌的牌面数字比4大的概率.
(11)爸爸、亮亮约定,若爸爸抽到的牌的牌面数字比亮亮的大,则爸爸胜;反之,则亮亮赢,你认为这个游戏是否公平?如果公平,请说明理由,如果不公平,更换一张扑克牌使游戏公平.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出3次红球即停止.
(1)从袋中不放回地取球,求恰好取4次停止的概率P1
(2)从袋中有放回地取球.
①求恰好取5次停止的概率P2
②记5次之内(含5次)取到红球的个数为,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料,若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2 800元,否则月工资定为2100元,令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.
(1)求X的分布列:
(2)求此员工月工资的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:

甲公司某员工A
 
乙公司某员工B
3
9
6
5
8
3
3
2
3
4
6
6
6
7
7
 
 
 
 
 
 
0
1
4
4
2
2
2
 
 
每名快递员完成一件货物投递可获得的劳务费情况如下:
甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;
(2)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;
(3)根据表中数据估算两公司的每位员工在该月所得的劳务费.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个矩形由三个相同的小矩形拼凑而成(如图所示),用三种不同颜色给3个小矩形涂色,每个小矩形只涂一种颜色,求:

(1)3个矩形都涂同一颜色的概率;
(2)3个小矩形颜色都不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线l1:x-2y-1=0,直线l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6}.
(1) 求直线l1与l2相交的概率;
(2) 求直线l1与l2的交点位于第一象限的概率.

查看答案和解析>>

同步练习册答案