精英家教网 > 高中数学 > 题目详情

已知一个矩形由三个相同的小矩形拼凑而成(如图所示),用三种不同颜色给3个小矩形涂色,每个小矩形只涂一种颜色,求:

(1)3个矩形都涂同一颜色的概率;
(2)3个小矩形颜色都不同的概率.

(1);(2)

解析试题分析:(1)利用分步乘法原理即可得出涂完三个矩形共有种方法,而3个矩形都涂同一颜色的方法只有三种,利用古典概型的概率计算公式即可得出;(2)“3个小矩形颜色都不同”相当于把三种颜色的全排列数,即种涂法.利用古典概型的概率计算公式即可得出.
试题解析:(1)由题意可知:用三种不同颜色给3个小矩形涂色,每个小矩形只涂一种颜色,可以分三步去完成:
涂第一个矩形可有三种方法,涂第二个矩形可有三种方法,涂第三个矩形可有三种方法,
由分步乘法原理可得涂完三个矩形共有=27种方法,其中3个矩形都涂同一颜色的方法只有三种.
设“3个矩形都涂同一颜色”为事件,则
(2)由(1)可知:三种不同颜色给3个小矩形涂色,每个小矩形只涂一种颜色,方法共有
设“3个小矩形颜色都不同”为事件,则事件包括种涂法.
由古典概型的概率计算公式可得:
考点:1、古典概型的概率;2、排列的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

图是某市日至日的空气质量指数趋势图,空气质量指数()小于表示空气质量优良,空气质量指数大于表示空气重度污染,某人随机选择日至日中的某一天到达该市,并停留天.

(1)求此人到达当日空气质量优良的概率;
(2)求此人停留期间至多有1天空气重度污染的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

年龄在60岁(含60岁)以上的人称为老龄人,某地区老龄人共有35万,随机调查了该地区700名老龄人的健康状况,结果如下表:

健康指数
 
2
 
1
 
0
 
-1
 
60岁至79岁的人数
 
250
 
260
 
65
 
25
 
80岁及以上的人数
 
20
 
45
 
20
 
15
 
其中健康指数的含义是:2表示“健康”,1表示“基本健康”,0表示“不健康,但生活能够自理”,-1表示“生活不能自理”。
(1)估计该地区80岁以下老龄人生活能够自理的概率。
(2)若一个地区老龄人健康指数的平均值不小于1.2,则该地区可被评为“老龄健康地区”.
请写出该地区老龄人健康指数X分布列,并判断该地区能否被评为“老龄健康地区”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位从一所学校招收某类特殊人才.对位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:

 

一般
良好
优秀
一般



良好



优秀



例如表中运动协调能力良好且逻辑思维能力一般的学生是人.由于部分数据丢失,只知道从这位参加测试的学生中随机抽取一位,抽到逻辑思维能力优秀的学生的概率为
(1)求的值;
(2)从运动协调能力为优秀的学生中任意抽取位,求其中至少有一位逻辑思维能力优秀的学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某种零件的尺寸X(单位:mm)服从正态分布,其正态曲线在(0,80)上是增函数,在(80,+∞)上是减函数,且f(80)=.
(1)求正态分布密度函数的解析式;
(2)估计尺寸在72mm~88mm之间的零件大约占总数的百分之几.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某大厦的一部电梯从底层出发后只能在第18,19,20层可以停靠,若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用X表示这5位乘客在第20层下电梯的人数,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9.电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.

(1)求p;
(2)求电流能在M与N之间通过的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲乙丙丁4人玩传球游戏,持球者将球等可能的传给其他3人,若球首先从甲传出,经过3次传球.
(1)求球恰好回到甲手中的概率;
(2)设乙获球(获得其他游戏者传的球)的次数为,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案