精英家教网 > 高中数学 > 题目详情

年龄在60岁(含60岁)以上的人称为老龄人,某地区老龄人共有35万,随机调查了该地区700名老龄人的健康状况,结果如下表:

健康指数
 
2
 
1
 
0
 
-1
 
60岁至79岁的人数
 
250
 
260
 
65
 
25
 
80岁及以上的人数
 
20
 
45
 
20
 
15
 
其中健康指数的含义是:2表示“健康”,1表示“基本健康”,0表示“不健康,但生活能够自理”,-1表示“生活不能自理”。
(1)估计该地区80岁以下老龄人生活能够自理的概率。
(2)若一个地区老龄人健康指数的平均值不小于1.2,则该地区可被评为“老龄健康地区”.
请写出该地区老龄人健康指数X分布列,并判断该地区能否被评为“老龄健康地区”.

(1);(2)不能.

解析试题分析:(1)该地区80岁以下老龄人生活能够自理的频率=80岁以下老龄人生活能够自理的人数÷80岁以下老龄人的总数,用频率估计概率即可;(2)分别求出取值为时的频率,进而列出对应的分布列,根据公式求出这个地区老龄人健康指数的平均值,再与1.2进行比较,从而判断这个地区是否能被评为“老龄健康地区”.
试题解析:(1)该地区80岁以下老龄人生活能够自理的频率为
所以该地区80岁以下老龄人生活能够自理的概率约为.       5分
(2)该地区老龄人健康指数的可能取值为,其分布列为(用频率估计概率):

因为,所以该地区不能被评为“老龄健康地区”.         13分
考点:1.期望与方差;2.离散型随机变量的分布列;3.频率和概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

低碳生活,从“衣食住行”开始.在国内一些网站中出现了“碳足迹”的应用,人们可以由此计算出自己每天的碳排放量,如家居用电的二氧化碳排放量(千克)=耗电度数,家用天然气的二氧化碳排放量(千克)=天然气使用立方数等.某校开展“节能减排,保护环境,从我做起!”的活动,该校高一、六班同学利用假期在东城、西城两个小区进行了逐户的关于“生活习惯是否符合低碳排放标准”的调查.生活习惯符合低碳观念的称为“低碳家庭”,否则称为“非低碳家庭”.经统计,这两类家庭占各自小区总户数的比例数据如下:

(1)如果在东城、西城两个小区内各随机选择2个家庭,求这个家庭中恰好有两个家庭是“低碳家庭”的概率;
(2)该班同学在东城小区经过大力宣传节能减排的重要意义,每周“非低碳家庭”中有的家庭能加入到“低碳家庭”的行列中.宣传两周后随机地从东城小区中任选个家庭,记表示个家庭中“低碳家庭”的个数,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出3次红球即停止.
(1)从袋中不放回地取球,求恰好取4次停止的概率P1
(2)从袋中有放回地取球.
①求恰好取5次停止的概率P2
②记5次之内(含5次)取到红球的个数为,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:

甲公司某员工A
 
乙公司某员工B
3
9
6
5
8
3
3
2
3
4
6
6
6
7
7
 
 
 
 
 
 
0
1
4
4
2
2
2
 
 
每名快递员完成一件货物投递可获得的劳务费情况如下:
甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;
(2)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;
(3)根据表中数据估算两公司的每位员工在该月所得的劳务费.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方形ABCD的边长为2,E,F,G,H分别是边AB,BC,CD,DA的中点.
(1)从C,D,E,F,G,H这六个点中,随机选取两个点,记这两个点之间的距离的平方为,求概率P.
(2)在正方形ABCD内部随机取一点P,求满足的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个矩形由三个相同的小矩形拼凑而成(如图所示),用三种不同颜色给3个小矩形涂色,每个小矩形只涂一种颜色,求:

(1)3个矩形都涂同一颜色的概率;
(2)3个小矩形颜色都不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:
方案1:运走设备,此时需花费4000元;
方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;
方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.
(1)试求方案3中损失费X(随机变量)的分布列;
(2)试比较哪一种方案好.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

判断下列命题正确与否.
(1)先后掷两枚质地均匀的硬币,等可能出现“两个正面”“两个反面”“一正一反”三种结果;
(2)某袋中装有大小均匀的三个红球、两个黑球、一个白球,任取一球,那么每种颜色的球被摸到的可能性相同;
(3)从-4,-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同;
(4)分别从3名男同学、4名女同学中各选一名代表,男、女同学当选的可能性相同.

查看答案和解析>>

同步练习册答案