精英家教网 > 高中数学 > 题目详情
已知{an}是等差数列,公差d≠0,a1,a3,a13成等比数列,Sn是{an}的前n项和
(1)求证:S1,S3,S9成等比数列;
(2)若S3=9,an=21,求n.
考点:等比关系的确定,等差数列的前n项和
专题:综合题,等差数列与等比数列
分析:(1)利用a1,a3,a13成等比数列,可得d=2a1,从而S3=9a1,S9=81a1,即可证明S1,S3,S9成等比数列;
(2)由S3=9,求出首项与公差,利用an=21,即可求n.
解答: (1)证明:∵a1,a3,a13成等比数列,
a32=a1a13
(a1+2d)2=a1(a1+12d)
∴d=2a1
∴S3=9a1,S9=81a1
S32=S1S9…(6分)
(2)解:S3=9a1=9,∴a1=1,d=2,
∵an=21=1+2(n-1),
∴n=11…(10分)
点评:本题主要考查等比数列的定义和性质,等比数列的通项公式,等差数列的通项公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=a,前n项和为Sn,且-a2,Sn,2an+1成等差数列.
(Ⅰ)试判断数列{an}是否成等比数列,并说明理由;
(Ⅱ)若a5=32,设bn=log2(a1a2…an),试求
1
b1
+
1
b2
+…+
1
bn
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC所对的边分别是a、b,设向量
m
=(a,b),
n
=(sinB,sinA),
p
=(b-2,a-2).
(1)若
m
n
,求证:△ABC为等腰三角形;
(2)若
m
p
,边长c=2,角C=60°,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)如果x为正实数,f(x)<0,并且f(1)=-
1
2
,试求f(x)在区间[-2,6]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列不等式
①|3-2x|≤5;
1
2x+1
>x.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且S4=4S2,a4=2a2+1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足
bn
an
=
1
2n
,n∈N*,设Tn为数列{bn}的前n项和,试比较Tn与3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

北京时间2011年3月11日13:46,日本本州岛附近发生9.0级强烈地震,强震导致福岛第一核电站发生爆炸,爆炸导致的放射性物质泄漏,日本东京电力公司为反应堆注水冷却燃料池,于是产生了大量的废水.4月4日,东京电力公司决定直接向海中排放上万吨高核辐射浓度的污染水,4月7日玉筋鱼被查出放射性铯137超标.《中华人民共和国环境保护法》规定食品的铯含量不得超过1.00ppm.现从一批玉筋鱼中随机抽出15条作为样本,经检验各条鱼的铯含量的茎叶图(以小数点前一位数字为茎,小数点后一数字为叶)如图所示:
(Ⅰ)若某检查人员从这15条鱼中随机抽出3条,求恰有1条鱼铯含量超标的概率;
(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据,若从这批鱼中任选3条,记ξ表示抽到的鱼中铯含量超标的鱼的条数,求ξ分布列和数学期Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在(3-x)20(x∈R,x≠0)的展开式中,已知第2r项与第r+1项(r≠1)的二项式系数相等.
(1)求r的值;
(2)若该展开式的第r项的值与倒数第r项的值
1
256
相等,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆O1:x2+y2-4x=0和圆O2:x2+y2-2y=0的位置关系是
 

查看答案和解析>>

同步练习册答案