精英家教网 > 高中数学 > 题目详情

【题目】为了调查观众对电视剧《风筝》的喜爱程度,某电视台举办了一次现场调查活动.在参加此活动的甲、乙两地大量观众中,各随机抽取了8名观众对该电视剧评分做调查(满分100分),被抽取的观众的评分结果如图所示.

(1)从甲地抽取的8名观众和乙地抽取的8名观众中分别各选取一人,在已知两人中至少一人评分不低于90分的条件下,求乙地被选取的观众评分低于90分的概率。

(2)从甲地抽取出来的8名观众中选取1人,从乙地抽取出来的8名观众中选取2人去参加代表大会,记选取的3人中评分不低于90分的人数为,求的分布列与期望。

【答案】(1);(2)见解析

【解析】分析:(1)由茎叶图先算出抽取的2人中至少有1人不低于90分的概率,在甲地抽取的不低于90分,在乙地抽取的低于90分的概率,根据公式得出答案;

(2)显得出的可能取值,然后算出相应的概率,列出表格算出期望

详解:(1)设事件A:抽取的2人中至少有1人不低于90分;事件B:在甲地抽取的不低于90分,在乙地抽取的低于90分。P(A)= P(B)= P(B︱A)=

(2)

概率\X

0

1

2

3

P

E(X)=

点晴:(1)条件概率,理解条件概率的公式:;(2)熟悉超几何分布概率计算方法。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】图,从甲地到丙地要经过两个十字路口(十字路口与十字路口),从乙地到丙地也要经过两个十字路口(十字路口与十字路口),设各路口信号灯工作相互独立,且在路口遇到红灯的概率分别为.

(1)求一辆车从乙地到丙地至少遇到一个红灯的概率;

(2)若小方驾驶一辆车从甲地出发,小张驾驶一辆车从乙地出发,他们相约在丙地见面,记表示这两人见面之前车辆行驶路上遇到的红灯的总个数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了增强消防安全意识,某中学做了一次消防知识讲座,从男生中随机抽取了50人,从女生中随机抽取了70人参加消防知识测试,统计数据得到如下的列联表:

优秀

非优秀

总计

男生

15

35

50

女生

30

40

70

总计

45

75

120

(1)试判断能否有90%的把握认为消防知识的测试成绩优秀与否与性别有关;

(2)为了宣传消防安全知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6名组成宣传小组.现从这6人中随机抽取2名到校外宣传,求到校外宣传的同学中至少有1名是男生的概率。

附:

P(K2k0)

0.25

0.15

0.10

0.05

0.025

0.010

k0

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2 , 则(
A.平面α与平面β垂直
B.平面α与平面β所成的(锐)二面角为45°
C.平面α与平面β平行
D.平面α与平面β所成的(锐)二面角为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋中有个白球和个红球(,且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.

(1)试用含的代数式表示一次摸球中奖的概率

(2)若,求三次摸球恰有一次中奖的概率;

(3)记三次摸球恰有一次中奖的概率为,当为何值时,取最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形,GACBD交点,

(I)证明:平面平面

(II)若 三棱锥的体积为,求该三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求f(x)的最小正周期;
(2)求f(x)在区间 上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设为三角形的三边,求证:

查看答案和解析>>

同步练习册答案