精英家教网 > 高中数学 > 题目详情
4.已知等差数列{an}的前n项和为Sn,a1=1,Sn-nan=-n2+n.
(1)求数列{an}的通项公式;
(2)设bn=an-2015,数列{bn}的前n项和为Tn,求Tn的最小值.

分析 (1)利用递推关系及其等差数列的通项公式即可得出;
(2)bn=an-2015=2n-2016,令bn≥0,解得n.即可得出数列{bn}的前n项和Tn取得最小值时的n的值.

解答 解:(1)∵Sn-nan=-n2+n,
∴当n≥2时,Sn-1-(n-1)an-1=-(n-1)2+(n-1),an-nan+(n-1)an-1=2-2n,
化为an-an-1=2,
∴数列{an}是等差数列,首项为1,公差为2.
∴an=1+2(n-1)=2n-1.
(2)bn=an-2015=2n-2016,
令bn≥0,解得n≥1008.
∴当n=1007或1008时,数列{bn}的前n项和Tn取得最小值.
T1008=$\frac{1008×(-2014+0)}{2}$=-1015056.

点评 本题考查了递推式的应用、等差数列的前n项和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如果函数y=(ax-1)${\;}^{-\frac{1}{2}}$的定义域为(0,+∞),那么实数a的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.以下集合中是有限集的是(  )
A.|x∈Z|x<3}B.{三角形}C.|x|x=2n,n∈Z}D.{x∈R|x2-1=0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},求:a取何实数时,A∩B≠∅与B∩C≠∅同时成立?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.集合A={x|7-3x<1,x∈R},B={x|x-a≥0,x∈R} C={x|kx2+2x-1=0}.
(1)若B⊆A,求实数a的取值范围;
(2)当a=0时,若B∩C中只有一个元素,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}是首项为2,公差为-1的等差数列.令bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,求证数列{bn}是等比数列.并求其通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若对一切实数x,y都有f(x+y)=f(x)+f(y).
(1)求f(0),并证明f(x)为奇函数;
(2)若f(1)=8,求f(-n),(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知全集U=R,A={x|x2+px+12=0},B={x|x2-5x+q=0},且A∪B={0,5,$\frac{12}{5}$},求实数p、q的值及A∩∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=$\frac{1}{2-{x}^{2}}$的值域是(  )
A.(-∞,$\frac{1}{2}$]B.(-∞,0)C.(-∞,0)∪[$\frac{1}{2}$,+∞]D.(0,$\frac{1}{2}$]

查看答案和解析>>

同步练习册答案