精英家教网 > 高中数学 > 题目详情
(本题满分12分)设函数,其中
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若不等式的解集为 ,求a的值。

(Ⅰ)当时,可化为
由此可得 
故不等式的解集为
( Ⅱ) 由 得:    
此不等式化为不等式组: 或
         或
因为,所以不等式组的解集为,由题设可得= ,故
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

据预测,我国在“十二五”期间内某产品关税与市场供应量的关系近似地满足(其中为关税的税率,且为市场价格,为正常数),当时的市场供应量曲线如图所示;
(1)根据图象求的值;
(2)若市场需求量为,它近似满足.
时的市场价格称为均衡价格,为使均衡价格控制在不低于9元的范围内,求税率的最小值.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

命题
①函数的图象与直线最多有一个交点;
②函数在区间上单调递增,则
③若,当时,,则
④函数的值域为R,则实数的取值范围是
⑤函数的图象关于轴对称;
以上命题正确的个数有(  )个
A.2B.3 C.4D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设映射是集合到集合的映射,若对于实数,在中不存在对应的元素,则实数的取值范围是
A.     B.   C.      D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数
(I)若,求的定义域;
(II) 若在区间上是减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数满足:“对于区间(1,2)上的任意实数 恒成立”,则称为完美函数.给出以下四个函数
        ②       ③     ④
其中是完美函数的序号是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是定义在上的减函数,并且
则实数的取值范围为               

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的定义域为[0,3],那么其值域为                

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从集合A={a,b}到集合B={0,1}的映射个数是         

查看答案和解析>>

同步练习册答案