精英家教网 > 高中数学 > 题目详情

(本题满分18分)第(1)小题满分6分,第(2)小题满分6分,第(3)小题满分6分。

圆锥曲线上任意两点连成的线段称为弦。若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦。已知点是圆锥曲线C上不与顶点重合的任意两点,是垂直于轴的一条垂轴弦,直线分别交轴于点和点

(1)试用的代数式分别表示

(2)若C的方程为(如图),求证:是与和点位置无关的定值;

(3)请选定一条除椭圆外的圆锥曲线C,试探究经过某种四则运算(加、减、乘、除),其结果是否是与和点位置无关的定值,写出你的研究结论并证明。

(说明:对于第3题,将根据研究结论所体现的思维层次,给予两种不同层次的评分)

(1)因为是垂直于轴的一条垂轴弦,所以

                 则 ……………. 2分

         令……………. 4分

         同理可得:,……………. 6分

(2)由(1)可知:……………. 8分

         在椭圆C:上,

           则(定值)

是与和点位置无关的定值         …………. 12分

(3)第一层次:

①点是圆C:上不与坐标轴重合的任意一点,是垂直于轴的垂轴弦,直线分别交轴于点和点,则。……………. 16分

证明如下:由(1)知:  

         在圆C:上,

           则

是与和点位置无关的定值

②点是双曲线C:上不与顶点重合的任意一点,是垂直于轴的垂轴弦,直线分别交轴于点和点,则。……………. 16分

证明如下:由(1)知:  

         在双曲线C:上,

           则

是与和点位置无关的定值

第二层次:

是抛物线C:上不与顶点重合的任意一点,是垂直于轴的垂轴弦,直线分别交轴于点和点,则。…………. 18分      

证明如下:由(1)知:

在抛物线C:上,

是与和点位置无关的定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)

在平行四边形中,已知过点的直线与线段分别相交于点。若

(1)求证:的关系为

(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。

(3)设函数上偶函数,当,又函数图象关于直线对称, 当方程上有两个不同的实数解时,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:2012届上海市崇明中学高三第一学期期中考试试题数学 题型:解答题

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
对于数列,如果存在一个正整数,使得对任意的)都有成立,那么就把这样一类数列称作周期为的周期数列,的最小值称作数列的最小正周期,以下简称周期。例如当是周期为的周期数列,当是周期为的周期数列。
(1)设数列满足),不同时为0),且数列是周期为的周期数列,求常数的值;
(2)设数列的前项和为,且
①若,试判断数列是否为周期数列,并说明理由;
②若,试判断数列是否为周期数列,并说明理由;
(3)设数列满足),,数列的前项和为,试问是否存在,使对任意的都有成立,若存在,求出的取值范围;不存在,   说明理由;

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市高三第一学期期中考试试题数学 题型:解答题

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)

对于数列,如果存在一个正整数,使得对任意的)都有成立,那么就把这样一类数列称作周期为的周期数列,的最小值称作数列的最小正周期,以下简称周期。例如当是周期为的周期数列,当是周期为的周期数列。

    (1)设数列满足),不同时为0),且数列是周期为的周期数列,求常数的值;

    (2)设数列的前项和为,且

①若,试判断数列是否为周期数列,并说明理由;

②若,试判断数列是否为周期数列,并说明理由;

    (3)设数列满足),,数列 的前项和为,试问是否存在,使对任意的都有成立,若存在,求出的取值范围;不存在,    说明理由;

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市十三校高三上学期第一次联考试题文科数学 题型:解答题

  (本题满分18分,第1小题满分5分,第2小题满分5分,第3小题满分8分)

已知函数,其中.

(1)当时,设,求的解析式及定义域;

(2)当时,求的最小值;

(3)设,当时,对任意恒成立,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题

(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)

设数列是等差数列,且公差为,若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.

(1)若,求证:该数列是“封闭数列”;

(2)试判断数列是否是“封闭数列”,为什么?

(3)设是数列的前项和,若公差,试问:是否存在这样的“封闭数列”,使;若存在,求的通项公式,若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案